Ruijsenaars 双曲系统中的巴克斯特算子 IV:耦合常数反射对称性

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Nikita Belousov, Sergey Derkachov, Sergey Kharchev, Sergey Khoroshkin
{"title":"Ruijsenaars 双曲系统中的巴克斯特算子 IV:耦合常数反射对称性","authors":"Nikita Belousov,&nbsp;Sergey Derkachov,&nbsp;Sergey Kharchev,&nbsp;Sergey Khoroshkin","doi":"10.1007/s00220-024-04952-5","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce and study a new family of commuting Baxter operators in the Ruijsenaars hyperbolic system, different from that considered by us earlier. Using a degeneration of Rains integral identity we verify the commutativity between the two families of Baxter operators and explore this fact for the proof of the coupling constant symmetry of the wave function. We also establish a connection between new Baxter operators and Noumi–Sano difference operators.\n</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-04952-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Baxter Operators in Ruijsenaars Hyperbolic System IV: Coupling Constant Reflection Symmetry\",\"authors\":\"Nikita Belousov,&nbsp;Sergey Derkachov,&nbsp;Sergey Kharchev,&nbsp;Sergey Khoroshkin\",\"doi\":\"10.1007/s00220-024-04952-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce and study a new family of commuting Baxter operators in the Ruijsenaars hyperbolic system, different from that considered by us earlier. Using a degeneration of Rains integral identity we verify the commutativity between the two families of Baxter operators and explore this fact for the proof of the coupling constant symmetry of the wave function. We also establish a connection between new Baxter operators and Noumi–Sano difference operators.\\n</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-024-04952-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-04952-5\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-04952-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们引入并研究了 Ruijsenaars 双曲系统中一个新的换向巴克斯特算子族,它不同于我们之前考虑过的算子族。利用雷恩斯积分的退化特性,我们验证了两个巴克斯特算子族之间的换向性,并探讨了这一事实对波函数耦合常数对称性的证明作用。我们还建立了新巴克斯特算子与努米-萨诺差分算子之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Baxter Operators in Ruijsenaars Hyperbolic System IV: Coupling Constant Reflection Symmetry

We introduce and study a new family of commuting Baxter operators in the Ruijsenaars hyperbolic system, different from that considered by us earlier. Using a degeneration of Rains integral identity we verify the commutativity between the two families of Baxter operators and explore this fact for the proof of the coupling constant symmetry of the wave function. We also establish a connection between new Baxter operators and Noumi–Sano difference operators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信