Guang-Bin Shen*, Guang-Ze Luo, Bao-Chen Qian* and Xiao-Qing Zhu*,
{"title":"评估有机氢化物/酸对作为一种热力学电位调节型多位质子耦合电子转移试剂的作用","authors":"Guang-Bin Shen*, Guang-Ze Luo, Bao-Chen Qian* and Xiao-Qing Zhu*, ","doi":"10.1021/acs.joc.4c00208","DOIUrl":null,"url":null,"abstract":"<p >Organic hydride/acid pairs have been reported as multisite proton-coupled electron transfer (MS-PCET) reagents in reductive MS-PCET reactions recently. Since the key step for an organic hydride/acid pair acting as an MS-PCET reagent is a chemical process of the organic hydride/acid pair releasing a formal hydrogen atom, the bond dissociation free energy of the organic hydride/acid pair releasing a formal hydrogen atom is a valuable thermodynamic parameter for objectively evaluating the thermodynamic potential for an organic hydride/acid pair to act as an MS-PCET reagent. Now, organic hydride/acid pairs of 216 organic hydrides have been demonstrated to be a potential type of thermodynamically potential-regulated MS-PCET reagent. Without a doubt, organic hydride/acid pairs reflect the change of N-substituted organic hydrides from simple hydride reductants to thermodynamically-regulated MS-PCET reagents, which could significantly expand the availability of novel MS-PCET reagents.</p>","PeriodicalId":57,"journal":{"name":"Journal of Organic Chemistry","volume":"89 9","pages":"6205–6221"},"PeriodicalIF":3.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Organic Hydride/Acid Pairs as a Type of Thermodynamic-Potential-Regulated Multisite Proton-Coupled Electron Transfer Reagents\",\"authors\":\"Guang-Bin Shen*, Guang-Ze Luo, Bao-Chen Qian* and Xiao-Qing Zhu*, \",\"doi\":\"10.1021/acs.joc.4c00208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Organic hydride/acid pairs have been reported as multisite proton-coupled electron transfer (MS-PCET) reagents in reductive MS-PCET reactions recently. Since the key step for an organic hydride/acid pair acting as an MS-PCET reagent is a chemical process of the organic hydride/acid pair releasing a formal hydrogen atom, the bond dissociation free energy of the organic hydride/acid pair releasing a formal hydrogen atom is a valuable thermodynamic parameter for objectively evaluating the thermodynamic potential for an organic hydride/acid pair to act as an MS-PCET reagent. Now, organic hydride/acid pairs of 216 organic hydrides have been demonstrated to be a potential type of thermodynamically potential-regulated MS-PCET reagent. Without a doubt, organic hydride/acid pairs reflect the change of N-substituted organic hydrides from simple hydride reductants to thermodynamically-regulated MS-PCET reagents, which could significantly expand the availability of novel MS-PCET reagents.</p>\",\"PeriodicalId\":57,\"journal\":{\"name\":\"Journal of Organic Chemistry\",\"volume\":\"89 9\",\"pages\":\"6205–6221\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organic Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.joc.4c00208\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.joc.4c00208","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Evaluation of Organic Hydride/Acid Pairs as a Type of Thermodynamic-Potential-Regulated Multisite Proton-Coupled Electron Transfer Reagents
Organic hydride/acid pairs have been reported as multisite proton-coupled electron transfer (MS-PCET) reagents in reductive MS-PCET reactions recently. Since the key step for an organic hydride/acid pair acting as an MS-PCET reagent is a chemical process of the organic hydride/acid pair releasing a formal hydrogen atom, the bond dissociation free energy of the organic hydride/acid pair releasing a formal hydrogen atom is a valuable thermodynamic parameter for objectively evaluating the thermodynamic potential for an organic hydride/acid pair to act as an MS-PCET reagent. Now, organic hydride/acid pairs of 216 organic hydrides have been demonstrated to be a potential type of thermodynamically potential-regulated MS-PCET reagent. Without a doubt, organic hydride/acid pairs reflect the change of N-substituted organic hydrides from simple hydride reductants to thermodynamically-regulated MS-PCET reagents, which could significantly expand the availability of novel MS-PCET reagents.
期刊介绍:
Journal of Organic Chemistry welcomes original contributions of fundamental research in all branches of the theory and practice of organic chemistry. In selecting manuscripts for publication, the editors place emphasis on the quality and novelty of the work, as well as the breadth of interest to the organic chemistry community.