新型 Au/Cu2NiSnS4 纳米异质结构:合成、结构、异质结带偏移和排列以及界面电荷转移动力学

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yogesh A. Jadhav, Ganesh K. Rahane, Tanmay Goswami, Kusuma Jagadish, Kalyani Chordiya, Anurag Roy, Tushar Debnath, Sagar B. Jathar, Rupesh Devan, Mousumi Upadhyay Kahaly, Sachin R. Rondiya*, Hirendra N. Ghosh* and Nelson Y. Dzade*, 
{"title":"新型 Au/Cu2NiSnS4 纳米异质结构:合成、结构、异质结带偏移和排列以及界面电荷转移动力学","authors":"Yogesh A. Jadhav,&nbsp;Ganesh K. Rahane,&nbsp;Tanmay Goswami,&nbsp;Kusuma Jagadish,&nbsp;Kalyani Chordiya,&nbsp;Anurag Roy,&nbsp;Tushar Debnath,&nbsp;Sagar B. Jathar,&nbsp;Rupesh Devan,&nbsp;Mousumi Upadhyay Kahaly,&nbsp;Sachin R. Rondiya*,&nbsp;Hirendra N. Ghosh* and Nelson Y. Dzade*,&nbsp;","doi":"10.1021/acsami.3c17081","DOIUrl":null,"url":null,"abstract":"<p >Considering the importance of physics and chemistry at material interfaces, we have explored the coupling of multinary chalcogenide semiconductor Cu<sub>2</sub>NiSnS<sub>4</sub> nanoparticles (CNTS NPs) for the first time with the noble metal (Au) to form Au-CNTS nano-heterostructures (NHSs). The Au-CNTS NHSs is synthesized by a simple facile hot injection method. Synergistic experimental and theoretical approaches are employed to characterize the structural, optical, and electrical properties of the Au-CNTS NHSs. The absorption spectra demonstrate enhanced and broadened optical absorption in the ultraviolet–visible–near-infrared (UV–Vis–NIR) region, which is corroborated by cyclic voltammetry (CV) readings. CV measurements show type II staggered band alignment, with a conduction band offset (CBO) of 0.21 and 0.23 eV at the Au-CNTS/CdS and CNTS/CdS interface, respectively. Complementary first-principles density functional theory (DFT) calculations predict the formation of a stable Au-CNTS NHSs, with the Au nanoparticle transferring its electrons to the CNTS. Moreover, our interface analysis using ultrafast transient absorption experiments demonstrate that the Au-CNTS NHSs facilitates efficient transport and separation of photoexcited charge carriers when compared to pristine CNTS. The transient measurements further reveal a plasmonic electronic transfer from the Au nanoparticle to CNTS. Our advanced analysis and findings will prompt investigations into new functional materials and their photo/electrocatalysis and optoelectronic device applications in the future.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"16 17","pages":"21746–21756"},"PeriodicalIF":8.2000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Au/Cu2NiSnS4 Nano-Heterostructure: Synthesis, Structure, Heterojunction Band Offset and Alignment, and Interfacial Charge Transfer Dynamics\",\"authors\":\"Yogesh A. Jadhav,&nbsp;Ganesh K. Rahane,&nbsp;Tanmay Goswami,&nbsp;Kusuma Jagadish,&nbsp;Kalyani Chordiya,&nbsp;Anurag Roy,&nbsp;Tushar Debnath,&nbsp;Sagar B. Jathar,&nbsp;Rupesh Devan,&nbsp;Mousumi Upadhyay Kahaly,&nbsp;Sachin R. Rondiya*,&nbsp;Hirendra N. Ghosh* and Nelson Y. Dzade*,&nbsp;\",\"doi\":\"10.1021/acsami.3c17081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Considering the importance of physics and chemistry at material interfaces, we have explored the coupling of multinary chalcogenide semiconductor Cu<sub>2</sub>NiSnS<sub>4</sub> nanoparticles (CNTS NPs) for the first time with the noble metal (Au) to form Au-CNTS nano-heterostructures (NHSs). The Au-CNTS NHSs is synthesized by a simple facile hot injection method. Synergistic experimental and theoretical approaches are employed to characterize the structural, optical, and electrical properties of the Au-CNTS NHSs. The absorption spectra demonstrate enhanced and broadened optical absorption in the ultraviolet–visible–near-infrared (UV–Vis–NIR) region, which is corroborated by cyclic voltammetry (CV) readings. CV measurements show type II staggered band alignment, with a conduction band offset (CBO) of 0.21 and 0.23 eV at the Au-CNTS/CdS and CNTS/CdS interface, respectively. Complementary first-principles density functional theory (DFT) calculations predict the formation of a stable Au-CNTS NHSs, with the Au nanoparticle transferring its electrons to the CNTS. Moreover, our interface analysis using ultrafast transient absorption experiments demonstrate that the Au-CNTS NHSs facilitates efficient transport and separation of photoexcited charge carriers when compared to pristine CNTS. The transient measurements further reveal a plasmonic electronic transfer from the Au nanoparticle to CNTS. Our advanced analysis and findings will prompt investigations into new functional materials and their photo/electrocatalysis and optoelectronic device applications in the future.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"16 17\",\"pages\":\"21746–21756\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.3c17081\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.3c17081","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

考虑到材料界面物理和化学的重要性,我们首次探索了二元掺杂半导体 Cu2NiSnS4 纳米粒子(CNTS NPs)与贵金属(Au)的耦合,形成 Au-CNTS 纳米异质结构(NHSs)。Au-CNTS NHSs 是通过简单易行的热注入法合成的。实验和理论方法协同作用,表征了 Au-CNTS NHS 的结构、光学和电学特性。吸收光谱显示了紫外-可见-近红外(UV-Vis-NIR)区域的增强和拓宽的光学吸收,循环伏安法(CV)读数也证实了这一点。CV 测量显示了第二类交错能带排列,金-CNTS/CdS 和 CNTS/CdS 界面的导带偏移(CBO)分别为 0.21 和 0.23 eV。补充性第一原理密度泛函理论(DFT)计算预测会形成稳定的 Au-CNTS NHS,Au 纳米粒子会将其电子转移到 CNTS 上。此外,我们利用超快瞬态吸收实验进行的界面分析表明,与原始 CNTS 相比,Au-CNTS NHS 有利于光激发电荷载流子的高效传输和分离。瞬态测量进一步揭示了从金纳米粒子到 CNTS 的等离子电子转移。我们的先进分析和研究结果将促进未来对新型功能材料及其光催化/电催化和光电器件应用的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Novel Au/Cu2NiSnS4 Nano-Heterostructure: Synthesis, Structure, Heterojunction Band Offset and Alignment, and Interfacial Charge Transfer Dynamics

Novel Au/Cu2NiSnS4 Nano-Heterostructure: Synthesis, Structure, Heterojunction Band Offset and Alignment, and Interfacial Charge Transfer Dynamics

Novel Au/Cu2NiSnS4 Nano-Heterostructure: Synthesis, Structure, Heterojunction Band Offset and Alignment, and Interfacial Charge Transfer Dynamics

Considering the importance of physics and chemistry at material interfaces, we have explored the coupling of multinary chalcogenide semiconductor Cu2NiSnS4 nanoparticles (CNTS NPs) for the first time with the noble metal (Au) to form Au-CNTS nano-heterostructures (NHSs). The Au-CNTS NHSs is synthesized by a simple facile hot injection method. Synergistic experimental and theoretical approaches are employed to characterize the structural, optical, and electrical properties of the Au-CNTS NHSs. The absorption spectra demonstrate enhanced and broadened optical absorption in the ultraviolet–visible–near-infrared (UV–Vis–NIR) region, which is corroborated by cyclic voltammetry (CV) readings. CV measurements show type II staggered band alignment, with a conduction band offset (CBO) of 0.21 and 0.23 eV at the Au-CNTS/CdS and CNTS/CdS interface, respectively. Complementary first-principles density functional theory (DFT) calculations predict the formation of a stable Au-CNTS NHSs, with the Au nanoparticle transferring its electrons to the CNTS. Moreover, our interface analysis using ultrafast transient absorption experiments demonstrate that the Au-CNTS NHSs facilitates efficient transport and separation of photoexcited charge carriers when compared to pristine CNTS. The transient measurements further reveal a plasmonic electronic transfer from the Au nanoparticle to CNTS. Our advanced analysis and findings will prompt investigations into new functional materials and their photo/electrocatalysis and optoelectronic device applications in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信