Zr:BiVO4 光阳极上 CoS 和 Bi2S3 纳米粒子的协同催化行为用于增强亚硫酸盐光电化学氧化和降解制药污染

IF 5.1 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Prabhakarn Arunachalam, Maged N. Shaddad, Mabrook S. Amer, Abdulaziz M. Alsalman and Jagannathan Madhavan
{"title":"Zr:BiVO4 光阳极上 CoS 和 Bi2S3 纳米粒子的协同催化行为用于增强亚硫酸盐光电化学氧化和降解制药污染","authors":"Prabhakarn Arunachalam, Maged N. Shaddad, Mabrook S. Amer, Abdulaziz M. Alsalman and Jagannathan Madhavan","doi":"10.1039/D4EN00018H","DOIUrl":null,"url":null,"abstract":"<p >Photoelectrocatalysis is a promising advancing technology that converts energy into electricity and purifies the environment. A photoelectrochemical (PEC) reaction that splits water and degrades pharmaceutical pollutants can be achieved using bismuth vanadate (BiVO<small><sub>4</sub></small>). The water oxidation dynamics of BiVO<small><sub>4</sub></small> photoanodes are sluggish owing to poor charge separation. In this paper, we demonstrate that bismuth sulfide (Bi<small><sub>2</sub></small>S<small><sub>3</sub></small>) and cobalt sulfide (CoS) nanoparticles have a cooperative effect on Zr-doped BiVO<small><sub>4</sub></small> electrodes (Zr:BiVO<small><sub>4</sub></small>) fabricated <em>via</em> PEC techniques. PEC water splitting results reveal that optimal Zr:BiVO<small><sub>4</sub></small>@Bi<small><sub>2</sub></small>S<small><sub>3</sub></small>–CoS films have a photocurrent response of 3.09 mA cm<small><sup>−2</sup></small> at 1.23 V <em>vs.</em> the RHE, which is three times better than Zr:BiVO<small><sub>4</sub></small> films. As a result of combining the above features, Zr:BiVO<small><sub>4</sub></small>@Bi<small><sub>2</sub></small>S<small><sub>3</sub></small>/CoS electrodes achieved 1.53% applied bias photon-to-current efficiency (ABPE), with a substantial reduction in photocurrent onset potential. Additionally, the composite photoanode demonstrated superior performance in the PEC degradation of tetracycline hydrochloride (TCH) to previously reported photonanodes. In the PEC reaction, Zr:BiVO<small><sub>4</sub></small>@Bi<small><sub>2</sub></small>S<small><sub>3</sub></small>/CoS yielded the most efficient degradation of TCH (94%), which was six times more than Zr:BiVO<small><sub>4</sub></small> and EC (55%). The present study presents a visible light-responsive, efficient, sustainable water-splitting technique for producing hydrogen and provides new insights into wastewater treatment.</p>","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":" 6","pages":" 2668-2682"},"PeriodicalIF":5.1000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cooperative catalytic behavior of CoS and Bi2S3 nanoparticles on Zr:BiVO4 photoanodes for enhanced photoelectrochemical sulfite oxidation coupled with pharmaceutical pollution degradation†\",\"authors\":\"Prabhakarn Arunachalam, Maged N. Shaddad, Mabrook S. Amer, Abdulaziz M. Alsalman and Jagannathan Madhavan\",\"doi\":\"10.1039/D4EN00018H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Photoelectrocatalysis is a promising advancing technology that converts energy into electricity and purifies the environment. A photoelectrochemical (PEC) reaction that splits water and degrades pharmaceutical pollutants can be achieved using bismuth vanadate (BiVO<small><sub>4</sub></small>). The water oxidation dynamics of BiVO<small><sub>4</sub></small> photoanodes are sluggish owing to poor charge separation. In this paper, we demonstrate that bismuth sulfide (Bi<small><sub>2</sub></small>S<small><sub>3</sub></small>) and cobalt sulfide (CoS) nanoparticles have a cooperative effect on Zr-doped BiVO<small><sub>4</sub></small> electrodes (Zr:BiVO<small><sub>4</sub></small>) fabricated <em>via</em> PEC techniques. PEC water splitting results reveal that optimal Zr:BiVO<small><sub>4</sub></small>@Bi<small><sub>2</sub></small>S<small><sub>3</sub></small>–CoS films have a photocurrent response of 3.09 mA cm<small><sup>−2</sup></small> at 1.23 V <em>vs.</em> the RHE, which is three times better than Zr:BiVO<small><sub>4</sub></small> films. As a result of combining the above features, Zr:BiVO<small><sub>4</sub></small>@Bi<small><sub>2</sub></small>S<small><sub>3</sub></small>/CoS electrodes achieved 1.53% applied bias photon-to-current efficiency (ABPE), with a substantial reduction in photocurrent onset potential. Additionally, the composite photoanode demonstrated superior performance in the PEC degradation of tetracycline hydrochloride (TCH) to previously reported photonanodes. In the PEC reaction, Zr:BiVO<small><sub>4</sub></small>@Bi<small><sub>2</sub></small>S<small><sub>3</sub></small>/CoS yielded the most efficient degradation of TCH (94%), which was six times more than Zr:BiVO<small><sub>4</sub></small> and EC (55%). The present study presents a visible light-responsive, efficient, sustainable water-splitting technique for producing hydrogen and provides new insights into wastewater treatment.</p>\",\"PeriodicalId\":73,\"journal\":{\"name\":\"Environmental Science: Nano\",\"volume\":\" 6\",\"pages\":\" 2668-2682\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Nano\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/en/d4en00018h\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/en/d4en00018h","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光电催化技术是一项前景广阔的先进技术,可将能量转化为电能并净化环境。利用钒酸铋(BiVO4)可以实现光电化学反应(PEC),从而分裂水并降解医药污染物。由于电荷分离不佳,BiVO4 光阳极的水氧化动力学非常缓慢。本文表明,纳米颗粒硫化铋(Bi2S3)和硫化钴(CoS)对通过 PEC 技术制造的掺杂 Zr 的 BiVO4 电极(Zr:BiVO4)具有协同作用。PEC 水分离结果表明,最佳 Zr:BiVO4@Bi2S3-CoS 薄膜在 1.23 V 对比 RHE 时的光电流响应为 3.09 mA/cm2,是 Zr:BiVO4 薄膜的三倍。综合上述特点,Zr:BiVO4@Bi2S3/CoS 电极的外加偏压光子对电流效率(ABPE)达到了 1.53%,光电流起始电位大幅降低。此外,该复合光阳极在盐酸四环素(TCH)的 PEC 降解中表现出了优于之前公布结果的性能。在 PEC 中,Zr:BiVO4@Bi2S3/CoS 降解 TCH 的效率最高(94%),是 Zr:BiVO4 和 EC(55%)的六倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cooperative catalytic behavior of CoS and Bi2S3 nanoparticles on Zr:BiVO4 photoanodes for enhanced photoelectrochemical sulfite oxidation coupled with pharmaceutical pollution degradation†

Cooperative catalytic behavior of CoS and Bi2S3 nanoparticles on Zr:BiVO4 photoanodes for enhanced photoelectrochemical sulfite oxidation coupled with pharmaceutical pollution degradation†

Photoelectrocatalysis is a promising advancing technology that converts energy into electricity and purifies the environment. A photoelectrochemical (PEC) reaction that splits water and degrades pharmaceutical pollutants can be achieved using bismuth vanadate (BiVO4). The water oxidation dynamics of BiVO4 photoanodes are sluggish owing to poor charge separation. In this paper, we demonstrate that bismuth sulfide (Bi2S3) and cobalt sulfide (CoS) nanoparticles have a cooperative effect on Zr-doped BiVO4 electrodes (Zr:BiVO4) fabricated via PEC techniques. PEC water splitting results reveal that optimal Zr:BiVO4@Bi2S3–CoS films have a photocurrent response of 3.09 mA cm−2 at 1.23 V vs. the RHE, which is three times better than Zr:BiVO4 films. As a result of combining the above features, Zr:BiVO4@Bi2S3/CoS electrodes achieved 1.53% applied bias photon-to-current efficiency (ABPE), with a substantial reduction in photocurrent onset potential. Additionally, the composite photoanode demonstrated superior performance in the PEC degradation of tetracycline hydrochloride (TCH) to previously reported photonanodes. In the PEC reaction, Zr:BiVO4@Bi2S3/CoS yielded the most efficient degradation of TCH (94%), which was six times more than Zr:BiVO4 and EC (55%). The present study presents a visible light-responsive, efficient, sustainable water-splitting technique for producing hydrogen and provides new insights into wastewater treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Science: Nano
Environmental Science: Nano CHEMISTRY, MULTIDISCIPLINARY-ENVIRONMENTAL SCIENCES
CiteScore
12.20
自引率
5.50%
发文量
290
审稿时长
2.1 months
期刊介绍: Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas: Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability Nanomaterial interactions with biological systems and nanotoxicology Environmental fate, reactivity, and transformations of nanoscale materials Nanoscale processes in the environment Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信