James Reilly, Ignasi Bartomeus, Dylan Simpson, Alfonso Allen-Perkins, Lucas Garibaldi, Rachael Winfree
{"title":"全球分析:野生昆虫和蜜蜂对作物产量同等重要","authors":"James Reilly, Ignasi Bartomeus, Dylan Simpson, Alfonso Allen-Perkins, Lucas Garibaldi, Rachael Winfree","doi":"10.1111/geb.13843","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Most of the world's food crops are dependent on pollinators. However, there is a great deal of uncertainty in the strength of this relationship, especially regarding the relative contributions of the honey bee (often a managed species) and wild insects to crop yields on a global scale. Previous data syntheses have likewise reached differing conclusions on whether pollinator species diversity, or only the number of pollinator visits to flowers, is important to crop yield. This study quantifies the current state of these relationships and links to a dynamic version of our analyses that updates automatically as studies become available.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Global.</p>\n </section>\n \n <section>\n \n <h3> Time Period</h3>\n \n <p>Present.</p>\n </section>\n \n <section>\n \n <h3> Taxa studied</h3>\n \n <p>Insect pollinators of global crops.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Using a newly created database of 93 crop pollination studies across six continents that roughly triples the number of studies previously available, we analysed the relationship between insect visit rates, pollinator diversity, and crop yields in a series of mixed-effects models.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We found that honey bees and wild insects contribute roughly equal amounts to crop yields worldwide, having similar average flower visitation rates and producing similar increases in yield per visit. We also found that pollinator species diversity was positively associated with increased crop yields even when total visits from all species are accounted for, though it was less explanatory than the total number of visits itself.</p>\n </section>\n \n <section>\n \n <h3> Main conclusions</h3>\n \n <p>Our analysis suggests a middle ground where honey bees are not responsible for the vast majority of crop pollination as has often been assumed in the agricultural literature, and likewise wild insects are not vastly more important than honey bees, as recent global analyses have reported. We also conclude that while pollinator diversity is less important than the number of pollinator visits, these typically involve many species, underscoring the importance of conserving a diversity of wild pollinators.</p>\n </section>\n </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 7","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13843","citationCount":"0","resultStr":"{\"title\":\"Wild insects and honey bees are equally important to crop yields in a global analysis\",\"authors\":\"James Reilly, Ignasi Bartomeus, Dylan Simpson, Alfonso Allen-Perkins, Lucas Garibaldi, Rachael Winfree\",\"doi\":\"10.1111/geb.13843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>Most of the world's food crops are dependent on pollinators. However, there is a great deal of uncertainty in the strength of this relationship, especially regarding the relative contributions of the honey bee (often a managed species) and wild insects to crop yields on a global scale. Previous data syntheses have likewise reached differing conclusions on whether pollinator species diversity, or only the number of pollinator visits to flowers, is important to crop yield. This study quantifies the current state of these relationships and links to a dynamic version of our analyses that updates automatically as studies become available.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Location</h3>\\n \\n <p>Global.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Time Period</h3>\\n \\n <p>Present.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Taxa studied</h3>\\n \\n <p>Insect pollinators of global crops.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Using a newly created database of 93 crop pollination studies across six continents that roughly triples the number of studies previously available, we analysed the relationship between insect visit rates, pollinator diversity, and crop yields in a series of mixed-effects models.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>We found that honey bees and wild insects contribute roughly equal amounts to crop yields worldwide, having similar average flower visitation rates and producing similar increases in yield per visit. We also found that pollinator species diversity was positively associated with increased crop yields even when total visits from all species are accounted for, though it was less explanatory than the total number of visits itself.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Main conclusions</h3>\\n \\n <p>Our analysis suggests a middle ground where honey bees are not responsible for the vast majority of crop pollination as has often been assumed in the agricultural literature, and likewise wild insects are not vastly more important than honey bees, as recent global analyses have reported. We also conclude that while pollinator diversity is less important than the number of pollinator visits, these typically involve many species, underscoring the importance of conserving a diversity of wild pollinators.</p>\\n </section>\\n </div>\",\"PeriodicalId\":176,\"journal\":{\"name\":\"Global Ecology and Biogeography\",\"volume\":\"33 7\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13843\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Ecology and Biogeography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/geb.13843\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Biogeography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/geb.13843","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Wild insects and honey bees are equally important to crop yields in a global analysis
Aim
Most of the world's food crops are dependent on pollinators. However, there is a great deal of uncertainty in the strength of this relationship, especially regarding the relative contributions of the honey bee (often a managed species) and wild insects to crop yields on a global scale. Previous data syntheses have likewise reached differing conclusions on whether pollinator species diversity, or only the number of pollinator visits to flowers, is important to crop yield. This study quantifies the current state of these relationships and links to a dynamic version of our analyses that updates automatically as studies become available.
Location
Global.
Time Period
Present.
Taxa studied
Insect pollinators of global crops.
Methods
Using a newly created database of 93 crop pollination studies across six continents that roughly triples the number of studies previously available, we analysed the relationship between insect visit rates, pollinator diversity, and crop yields in a series of mixed-effects models.
Results
We found that honey bees and wild insects contribute roughly equal amounts to crop yields worldwide, having similar average flower visitation rates and producing similar increases in yield per visit. We also found that pollinator species diversity was positively associated with increased crop yields even when total visits from all species are accounted for, though it was less explanatory than the total number of visits itself.
Main conclusions
Our analysis suggests a middle ground where honey bees are not responsible for the vast majority of crop pollination as has often been assumed in the agricultural literature, and likewise wild insects are not vastly more important than honey bees, as recent global analyses have reported. We also conclude that while pollinator diversity is less important than the number of pollinator visits, these typically involve many species, underscoring the importance of conserving a diversity of wild pollinators.
期刊介绍:
Global Ecology and Biogeography (GEB) welcomes papers that investigate broad-scale (in space, time and/or taxonomy), general patterns in the organization of ecological systems and assemblages, and the processes that underlie them. In particular, GEB welcomes studies that use macroecological methods, comparative analyses, meta-analyses, reviews, spatial analyses and modelling to arrive at general, conceptual conclusions. Studies in GEB need not be global in spatial extent, but the conclusions and implications of the study must be relevant to ecologists and biogeographers globally, rather than being limited to local areas, or specific taxa. Similarly, GEB is not limited to spatial studies; we are equally interested in the general patterns of nature through time, among taxa (e.g., body sizes, dispersal abilities), through the course of evolution, etc. Further, GEB welcomes papers that investigate general impacts of human activities on ecological systems in accordance with the above criteria.