设备识别助手作为数字双胞胎的额外数据管理方法

IF 4.6 2区 工程技术 Q2 ENGINEERING, MANUFACTURING
Sören Dittmann , Marc-Philipp Mathieu , Pengxiang Zhang , Arne Glodde , Franz Dietrich
{"title":"设备识别助手作为数字双胞胎的额外数据管理方法","authors":"Sören Dittmann ,&nbsp;Marc-Philipp Mathieu ,&nbsp;Pengxiang Zhang ,&nbsp;Arne Glodde ,&nbsp;Franz Dietrich","doi":"10.1016/j.cirpj.2024.03.007","DOIUrl":null,"url":null,"abstract":"<div><p>Reusing shopfloor data within Digital Twins offers the potential to optimize manufacturing-, production planning-, and engineering processes. Reusing data is only possible if the data is structured independently of the involved project teams. Current approaches focus on valuable, but complex standardization initiatives. This paper introduces device recognition assistants as a new, flexible data management method for Digital Twins. These assistants are based on time series classifiers to structure the communicated raw data. The assistants are experimentally evaluated. The results show the large potential for semantic annotations via time series classifications to assist the reuse of data within Digital Twins.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Device recognition assistants as additional data management method for Digital Twins\",\"authors\":\"Sören Dittmann ,&nbsp;Marc-Philipp Mathieu ,&nbsp;Pengxiang Zhang ,&nbsp;Arne Glodde ,&nbsp;Franz Dietrich\",\"doi\":\"10.1016/j.cirpj.2024.03.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reusing shopfloor data within Digital Twins offers the potential to optimize manufacturing-, production planning-, and engineering processes. Reusing data is only possible if the data is structured independently of the involved project teams. Current approaches focus on valuable, but complex standardization initiatives. This paper introduces device recognition assistants as a new, flexible data management method for Digital Twins. These assistants are based on time series classifiers to structure the communicated raw data. The assistants are experimentally evaluated. The results show the large potential for semantic annotations via time series classifications to assist the reuse of data within Digital Twins.</p></div>\",\"PeriodicalId\":56011,\"journal\":{\"name\":\"CIRP Journal of Manufacturing Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CIRP Journal of Manufacturing Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755581724000373\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRP Journal of Manufacturing Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755581724000373","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

在数字孪生系统中重复使用车间数据可以优化制造、生产规划和工程流程。只有在数据结构独立于相关项目团队的情况下,才有可能重复使用数据。目前的方法侧重于有价值但复杂的标准化措施。本文介绍了设备识别助手,作为数字孪生的一种新的、灵活的数据管理方法。这些助手以时间序列分类器为基础,对交流的原始数据进行结构化处理。本文对这些助手进行了实验评估。结果表明,通过时间序列分类进行语义注释的潜力巨大,有助于数字孪生中的数据重用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Device recognition assistants as additional data management method for Digital Twins

Reusing shopfloor data within Digital Twins offers the potential to optimize manufacturing-, production planning-, and engineering processes. Reusing data is only possible if the data is structured independently of the involved project teams. Current approaches focus on valuable, but complex standardization initiatives. This paper introduces device recognition assistants as a new, flexible data management method for Digital Twins. These assistants are based on time series classifiers to structure the communicated raw data. The assistants are experimentally evaluated. The results show the large potential for semantic annotations via time series classifications to assist the reuse of data within Digital Twins.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CIRP Journal of Manufacturing Science and Technology
CIRP Journal of Manufacturing Science and Technology Engineering-Industrial and Manufacturing Engineering
CiteScore
9.10
自引率
6.20%
发文量
166
审稿时长
63 days
期刊介绍: The CIRP Journal of Manufacturing Science and Technology (CIRP-JMST) publishes fundamental papers on manufacturing processes, production equipment and automation, product design, manufacturing systems and production organisations up to the level of the production networks, including all the related technical, human and economic factors. Preference is given to contributions describing research results whose feasibility has been demonstrated either in a laboratory or in the industrial praxis. Case studies and review papers on specific issues in manufacturing science and technology are equally encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信