通过模型预测控制的直接偏航力矩控制框架,考虑了自动驾驶车辆的轨迹跟踪性能和操控稳定性

IF 5.4 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Lisheng Jin, Heping Zhou, Xianyi Xie, Baicang Guo, Xiangsheng Ma
{"title":"通过模型预测控制的直接偏航力矩控制框架,考虑了自动驾驶车辆的轨迹跟踪性能和操控稳定性","authors":"Lisheng Jin,&nbsp;Heping Zhou,&nbsp;Xianyi Xie,&nbsp;Baicang Guo,&nbsp;Xiangsheng Ma","doi":"10.1016/j.conengprac.2024.105947","DOIUrl":null,"url":null,"abstract":"<div><p>This paper considers the problem of optimal coordination of trajectory tracking performance and handling stability for autonomous equipped with distributed drive electric vehicle. Therefore, a hierarchical frame for multi-mode chassis dynamics torque vector allocation strategy is proposed, which aimed to solve the contradictory issues between vehicles’ trajectory tracking accuracy and handling stability under extreme working conditions. Firstly, in a hierarchical architecture, the upper-level trajectory tracking controller is designed by using model predictive control theory, which is used to solve the front wheel angle and the additional yaw moment of the vehicle. Secondly, the lower-level multimode torque distribution controller severs the sum of tire force utilization in every wheel as the objective function, and designs three distribution modes of chassis dynamic torque vectors based on the response of the longitudinal force and yaw moment obtained from the upper-level controller. Thirdly, the switching mechanism between the three chassis torque vector distribution modes is set according to the road adhesion condition and the requirements of the upper-level controller. Then, an analysis is conducted on the computational time complexity and robustness of the algorithm, confirming the potential for real-world application of the algorithm. Finally, Simulink/CarSim co-simulation test and hardware-in-the-loop test platform are carried out. And a vehicle trajectory tracking controller with single-mode torque vectors distribution by MPC is used as the baseline algorithm. The test results show that the proposed method show better trajectory tracking performance and handling stability than the baseline algorithm under the conditions of low adhesion surfaces and split-friction surfaces. Therefore, this study provides a solution for the safe driving of autonomous vehicles under extreme working conditions.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A direct yaw moment control frame through model predictive control considering vehicle trajectory tracking performance and handling stability for autonomous driving\",\"authors\":\"Lisheng Jin,&nbsp;Heping Zhou,&nbsp;Xianyi Xie,&nbsp;Baicang Guo,&nbsp;Xiangsheng Ma\",\"doi\":\"10.1016/j.conengprac.2024.105947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper considers the problem of optimal coordination of trajectory tracking performance and handling stability for autonomous equipped with distributed drive electric vehicle. Therefore, a hierarchical frame for multi-mode chassis dynamics torque vector allocation strategy is proposed, which aimed to solve the contradictory issues between vehicles’ trajectory tracking accuracy and handling stability under extreme working conditions. Firstly, in a hierarchical architecture, the upper-level trajectory tracking controller is designed by using model predictive control theory, which is used to solve the front wheel angle and the additional yaw moment of the vehicle. Secondly, the lower-level multimode torque distribution controller severs the sum of tire force utilization in every wheel as the objective function, and designs three distribution modes of chassis dynamic torque vectors based on the response of the longitudinal force and yaw moment obtained from the upper-level controller. Thirdly, the switching mechanism between the three chassis torque vector distribution modes is set according to the road adhesion condition and the requirements of the upper-level controller. Then, an analysis is conducted on the computational time complexity and robustness of the algorithm, confirming the potential for real-world application of the algorithm. Finally, Simulink/CarSim co-simulation test and hardware-in-the-loop test platform are carried out. And a vehicle trajectory tracking controller with single-mode torque vectors distribution by MPC is used as the baseline algorithm. The test results show that the proposed method show better trajectory tracking performance and handling stability than the baseline algorithm under the conditions of low adhesion surfaces and split-friction surfaces. Therefore, this study provides a solution for the safe driving of autonomous vehicles under extreme working conditions.</p></div>\",\"PeriodicalId\":50615,\"journal\":{\"name\":\"Control Engineering Practice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering Practice\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967066124001072\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124001072","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了自主配备分布式驱动电动汽车的轨迹跟踪性能和操纵稳定性的优化协调问题。因此,本文提出了一种多模式底盘动力学扭矩矢量分配策略的分层架构,旨在解决极端工况下车辆轨迹跟踪精度与操纵稳定性之间的矛盾问题。首先,在分层架构中,利用模型预测控制理论设计上层轨迹跟踪控制器,用于解决车辆的前轮角和附加偏航力矩。其次,下层多模式扭矩分配控制器以各车轮的轮胎力利用率之和为目标函数,根据上层控制器得到的纵向力和偏航力矩的响应,设计出底盘动态扭矩矢量的三种分配模式。第三,根据路面附着情况和上层控制器的要求,设置三种底盘扭矩矢量分配模式之间的切换机制。然后,对算法的计算时间复杂性和鲁棒性进行了分析,证实了该算法在实际应用中的潜力。最后,进行了 Simulink/CarSim 协同仿真测试和硬件在环测试平台。并以 MPC 单模式扭矩矢量分配的车辆轨迹跟踪控制器作为基准算法。测试结果表明,在低附着力表面和分裂摩擦表面条件下,所提出的方法比基准算法显示出更好的轨迹跟踪性能和操纵稳定性。因此,本研究为极端工况下自动驾驶汽车的安全驾驶提供了一种解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A direct yaw moment control frame through model predictive control considering vehicle trajectory tracking performance and handling stability for autonomous driving

This paper considers the problem of optimal coordination of trajectory tracking performance and handling stability for autonomous equipped with distributed drive electric vehicle. Therefore, a hierarchical frame for multi-mode chassis dynamics torque vector allocation strategy is proposed, which aimed to solve the contradictory issues between vehicles’ trajectory tracking accuracy and handling stability under extreme working conditions. Firstly, in a hierarchical architecture, the upper-level trajectory tracking controller is designed by using model predictive control theory, which is used to solve the front wheel angle and the additional yaw moment of the vehicle. Secondly, the lower-level multimode torque distribution controller severs the sum of tire force utilization in every wheel as the objective function, and designs three distribution modes of chassis dynamic torque vectors based on the response of the longitudinal force and yaw moment obtained from the upper-level controller. Thirdly, the switching mechanism between the three chassis torque vector distribution modes is set according to the road adhesion condition and the requirements of the upper-level controller. Then, an analysis is conducted on the computational time complexity and robustness of the algorithm, confirming the potential for real-world application of the algorithm. Finally, Simulink/CarSim co-simulation test and hardware-in-the-loop test platform are carried out. And a vehicle trajectory tracking controller with single-mode torque vectors distribution by MPC is used as the baseline algorithm. The test results show that the proposed method show better trajectory tracking performance and handling stability than the baseline algorithm under the conditions of low adhesion surfaces and split-friction surfaces. Therefore, this study provides a solution for the safe driving of autonomous vehicles under extreme working conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Control Engineering Practice
Control Engineering Practice 工程技术-工程:电子与电气
CiteScore
9.20
自引率
12.20%
发文量
183
审稿时长
44 days
期刊介绍: Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper. The scope of Control Engineering Practice matches the activities of IFAC. Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信