利用微型荧光显微镜和深度学习研究与惩罚相关的大脑回路

Matthew C. Broomer , Nicholas J. Beacher , Michael W. Wang , Da-Ting Lin
{"title":"利用微型荧光显微镜和深度学习研究与惩罚相关的大脑回路","authors":"Matthew C. Broomer ,&nbsp;Nicholas J. Beacher ,&nbsp;Michael W. Wang ,&nbsp;Da-Ting Lin","doi":"10.1016/j.addicn.2024.100154","DOIUrl":null,"url":null,"abstract":"<div><p>In humans experiencing substance use disorder (SUD), abstinence from drug use is often motivated by a desire to avoid some undesirable consequence of further use: health effects, legal ramifications, etc. This process can be experimentally modeled in rodents by training and subsequently punishing an operant response in a context-induced reinstatement procedure. Understanding the biobehavioral mechanisms underlying punishment learning is critical to understanding both abstinence and relapse in individuals with SUD. To date, most investigations into the neural mechanisms of context-induced reinstatement following punishment have utilized discrete loss-of-function manipulations that do not capture ongoing changes in neural circuitry related to punishment-induced behavior change. Here, we describe a two-pronged approach to analyzing the biobehavioral mechanisms of punishment learning using miniature fluorescence microscopes and deep learning algorithms. We review recent advancements in both techniques and consider a target neural circuit.</p></div>","PeriodicalId":72067,"journal":{"name":"Addiction neuroscience","volume":"11 ","pages":"Article 100154"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772392524000130/pdfft?md5=abaf3128ebf1e2c3ad4d0bcd104cdbb4&pid=1-s2.0-S2772392524000130-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Examining a punishment-related brain circuit with miniature fluorescence microscopes and deep learning\",\"authors\":\"Matthew C. Broomer ,&nbsp;Nicholas J. Beacher ,&nbsp;Michael W. Wang ,&nbsp;Da-Ting Lin\",\"doi\":\"10.1016/j.addicn.2024.100154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In humans experiencing substance use disorder (SUD), abstinence from drug use is often motivated by a desire to avoid some undesirable consequence of further use: health effects, legal ramifications, etc. This process can be experimentally modeled in rodents by training and subsequently punishing an operant response in a context-induced reinstatement procedure. Understanding the biobehavioral mechanisms underlying punishment learning is critical to understanding both abstinence and relapse in individuals with SUD. To date, most investigations into the neural mechanisms of context-induced reinstatement following punishment have utilized discrete loss-of-function manipulations that do not capture ongoing changes in neural circuitry related to punishment-induced behavior change. Here, we describe a two-pronged approach to analyzing the biobehavioral mechanisms of punishment learning using miniature fluorescence microscopes and deep learning algorithms. We review recent advancements in both techniques and consider a target neural circuit.</p></div>\",\"PeriodicalId\":72067,\"journal\":{\"name\":\"Addiction neuroscience\",\"volume\":\"11 \",\"pages\":\"Article 100154\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772392524000130/pdfft?md5=abaf3128ebf1e2c3ad4d0bcd104cdbb4&pid=1-s2.0-S2772392524000130-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Addiction neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772392524000130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Addiction neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772392524000130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于患有药物使用障碍(SUD)的人来说,戒除药物使用的动机往往是希望避免进一步使用药物所带来的不良后果:健康影响、法律后果等。这一过程可以在啮齿类动物身上进行实验模拟,即在情境诱导恢复程序中训练并随后惩罚操作反应。了解惩罚学习的生物行为机制对于了解吸毒成瘾者的戒断和复吸至关重要。迄今为止,对惩罚后情境诱导恢复的神经机制的大多数研究都是利用离散的功能缺失操作,无法捕捉到与惩罚诱导的行为改变相关的神经回路的持续变化。在这里,我们将介绍一种双管齐下的方法,利用微型荧光显微镜和深度学习算法分析惩罚学习的生物行为机制。我们回顾了这两种技术的最新进展,并考虑了一个目标神经回路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Examining a punishment-related brain circuit with miniature fluorescence microscopes and deep learning

In humans experiencing substance use disorder (SUD), abstinence from drug use is often motivated by a desire to avoid some undesirable consequence of further use: health effects, legal ramifications, etc. This process can be experimentally modeled in rodents by training and subsequently punishing an operant response in a context-induced reinstatement procedure. Understanding the biobehavioral mechanisms underlying punishment learning is critical to understanding both abstinence and relapse in individuals with SUD. To date, most investigations into the neural mechanisms of context-induced reinstatement following punishment have utilized discrete loss-of-function manipulations that do not capture ongoing changes in neural circuitry related to punishment-induced behavior change. Here, we describe a two-pronged approach to analyzing the biobehavioral mechanisms of punishment learning using miniature fluorescence microscopes and deep learning algorithms. We review recent advancements in both techniques and consider a target neural circuit.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Addiction neuroscience
Addiction neuroscience Neuroscience (General)
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
118 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信