{"title":"利用新型细菌菌株生产辛胺,并采用经济高效的单步法进行高纯度纯化","authors":"Furkan Orhan , Akın Akıncıoğlu , Ertuğrul Ceyran","doi":"10.1016/j.jbiotec.2024.04.003","DOIUrl":null,"url":null,"abstract":"<div><p>This study marks the exploration into the production of ectoine, a valuable compound with significant potential as an antioxidant, osmoprotectant, anti-inflammatory agent, and stabilizer of cell membranes, proteins, and DNA integrity. Our focus centred on investigating the presence of ectoine and optimizing its production by the novel ectoine producer bacterial strain, <em>Piscibacillus halophilus</em>. For the optimization of ectoine production the effects of carbon and nitrogen sources, salt, pH, agitation and incubation period were optimized by one-factor-at-a-time. We started with an initial ectoine content of 46.92 mg/L, and through a series of optimization processes, we achieved a remarkable increase, resulting in an ectoine content of 1498.2 mg/L. The bacterial species <em>P. halophilus</em> achieved its highest ectoine production after 48 h of incubation, with conditions set at 10 % (w/v) salinity, pH of 7.50, and an agitation speed of 160 rpm. These precise conditions were found to be the most favourable for maximizing ectoine production by this strain. Besides, we have achieved successful purification of ectoine from the crude extract through a streamlined single-step process. This purification method has delivered an exceptional level of purity, surpassing 99.15 %, and an impressive yield of over 99 %. Importantly, we accomplished this using readily available and cost-effective strong acids (HCl) and strong bases (NaOH) to arrange pH gradients. The use of acid and base in the purification process of ectoine reflects an innovative and sustainable methodology.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ectoine production from a novel bacterial strain and high-purity purification with a cost-effective and single-step method\",\"authors\":\"Furkan Orhan , Akın Akıncıoğlu , Ertuğrul Ceyran\",\"doi\":\"10.1016/j.jbiotec.2024.04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study marks the exploration into the production of ectoine, a valuable compound with significant potential as an antioxidant, osmoprotectant, anti-inflammatory agent, and stabilizer of cell membranes, proteins, and DNA integrity. Our focus centred on investigating the presence of ectoine and optimizing its production by the novel ectoine producer bacterial strain, <em>Piscibacillus halophilus</em>. For the optimization of ectoine production the effects of carbon and nitrogen sources, salt, pH, agitation and incubation period were optimized by one-factor-at-a-time. We started with an initial ectoine content of 46.92 mg/L, and through a series of optimization processes, we achieved a remarkable increase, resulting in an ectoine content of 1498.2 mg/L. The bacterial species <em>P. halophilus</em> achieved its highest ectoine production after 48 h of incubation, with conditions set at 10 % (w/v) salinity, pH of 7.50, and an agitation speed of 160 rpm. These precise conditions were found to be the most favourable for maximizing ectoine production by this strain. Besides, we have achieved successful purification of ectoine from the crude extract through a streamlined single-step process. This purification method has delivered an exceptional level of purity, surpassing 99.15 %, and an impressive yield of over 99 %. Importantly, we accomplished this using readily available and cost-effective strong acids (HCl) and strong bases (NaOH) to arrange pH gradients. The use of acid and base in the purification process of ectoine reflects an innovative and sustainable methodology.</p></div>\",\"PeriodicalId\":15153,\"journal\":{\"name\":\"Journal of biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168165624000944\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168165624000944","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Ectoine production from a novel bacterial strain and high-purity purification with a cost-effective and single-step method
This study marks the exploration into the production of ectoine, a valuable compound with significant potential as an antioxidant, osmoprotectant, anti-inflammatory agent, and stabilizer of cell membranes, proteins, and DNA integrity. Our focus centred on investigating the presence of ectoine and optimizing its production by the novel ectoine producer bacterial strain, Piscibacillus halophilus. For the optimization of ectoine production the effects of carbon and nitrogen sources, salt, pH, agitation and incubation period were optimized by one-factor-at-a-time. We started with an initial ectoine content of 46.92 mg/L, and through a series of optimization processes, we achieved a remarkable increase, resulting in an ectoine content of 1498.2 mg/L. The bacterial species P. halophilus achieved its highest ectoine production after 48 h of incubation, with conditions set at 10 % (w/v) salinity, pH of 7.50, and an agitation speed of 160 rpm. These precise conditions were found to be the most favourable for maximizing ectoine production by this strain. Besides, we have achieved successful purification of ectoine from the crude extract through a streamlined single-step process. This purification method has delivered an exceptional level of purity, surpassing 99.15 %, and an impressive yield of over 99 %. Importantly, we accomplished this using readily available and cost-effective strong acids (HCl) and strong bases (NaOH) to arrange pH gradients. The use of acid and base in the purification process of ectoine reflects an innovative and sustainable methodology.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.