利用无监督机器学习识别脊髓损伤后的膀胱表型:检查泌尿系统症状和生活质量的新方法。

Blayne Welk, Tianyue Zhong, Jeremy Myers, John Stoffel, Sean Elliot, Sara M Lenherr, Daniel Lizotte
{"title":"利用无监督机器学习识别脊髓损伤后的膀胱表型:检查泌尿系统症状和生活质量的新方法。","authors":"Blayne Welk, Tianyue Zhong, Jeremy Myers, John Stoffel, Sean Elliot, Sara M Lenherr, Daniel Lizotte","doi":"10.1097/ju.0000000000003984","DOIUrl":null,"url":null,"abstract":"Patients with spinal cord injuries (SCI) experience variable urinary symptoms and QOL. Our objective was to use machine learning to identify bladder-relevant phenotypes after SCI and assess their association with urinary symptoms and QOL.","PeriodicalId":501636,"journal":{"name":"The Journal of Urology","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying Bladder Phenotypes After Spinal Cord Injury With Unsupervised Machine Learning: A New Way to Examine Urinary Symptoms and Quality of Life.\",\"authors\":\"Blayne Welk, Tianyue Zhong, Jeremy Myers, John Stoffel, Sean Elliot, Sara M Lenherr, Daniel Lizotte\",\"doi\":\"10.1097/ju.0000000000003984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Patients with spinal cord injuries (SCI) experience variable urinary symptoms and QOL. Our objective was to use machine learning to identify bladder-relevant phenotypes after SCI and assess their association with urinary symptoms and QOL.\",\"PeriodicalId\":501636,\"journal\":{\"name\":\"The Journal of Urology\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Urology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1097/ju.0000000000003984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Urology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/ju.0000000000003984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脊髓损伤(SCI)患者的泌尿症状和生活质量参差不齐。我们的目标是利用机器学习来识别脊髓损伤后的膀胱相关表型,并评估它们与泌尿症状和 QOL 的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying Bladder Phenotypes After Spinal Cord Injury With Unsupervised Machine Learning: A New Way to Examine Urinary Symptoms and Quality of Life.
Patients with spinal cord injuries (SCI) experience variable urinary symptoms and QOL. Our objective was to use machine learning to identify bladder-relevant phenotypes after SCI and assess their association with urinary symptoms and QOL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信