论两种随机波动过程下的期权定价

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wenjia Xie, Zhongyi Huang
{"title":"论两种随机波动过程下的期权定价","authors":"Wenjia Xie, Zhongyi Huang","doi":"10.4208/eajam.2022-356.180923","DOIUrl":null,"url":null,"abstract":"From the Black-Scholes option pricing model, this work evaluates the evolution of the mathematical modelling into the double stochastic volatility model that\nstudies the optimization performance in partial differential equation (PDE) methods.\nThis paper focuses on the calibration and numerical methodology processes to derive\nthe comparison of the Heston and the double Heston models to design a more efficient\nnumerical iterative splitting method. Through Li and Huang’s iterative splitting method,\nthe numerical results conclude that the mixed method reduces the overall computational\ncost and improves the convergence of the iterative process while maintaining the simplicity, flexibility and interpretability of PDE methods.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Pricing Options Under Two Stochastic Volatility Processes\",\"authors\":\"Wenjia Xie, Zhongyi Huang\",\"doi\":\"10.4208/eajam.2022-356.180923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From the Black-Scholes option pricing model, this work evaluates the evolution of the mathematical modelling into the double stochastic volatility model that\\nstudies the optimization performance in partial differential equation (PDE) methods.\\nThis paper focuses on the calibration and numerical methodology processes to derive\\nthe comparison of the Heston and the double Heston models to design a more efficient\\nnumerical iterative splitting method. Through Li and Huang’s iterative splitting method,\\nthe numerical results conclude that the mixed method reduces the overall computational\\ncost and improves the convergence of the iterative process while maintaining the simplicity, flexibility and interpretability of PDE methods.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/eajam.2022-356.180923\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/eajam.2022-356.180923","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

从布莱克-斯科尔斯(Black-Scholes)期权定价模型出发,本研究评估了数学建模演变为双随机波动率模型的过程,研究了偏微分方程(PDE)方法的优化性能。本文重点研究了校准和数值方法过程,得出了赫斯顿模型和双赫斯顿模型的比较结果,从而设计出一种更有效的数值迭代分裂方法。通过李和黄的迭代分裂方法,数值结果得出结论:混合方法降低了整体计算成本,提高了迭代过程的收敛性,同时保持了 PDE 方法的简单性、灵活性和可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Pricing Options Under Two Stochastic Volatility Processes
From the Black-Scholes option pricing model, this work evaluates the evolution of the mathematical modelling into the double stochastic volatility model that studies the optimization performance in partial differential equation (PDE) methods. This paper focuses on the calibration and numerical methodology processes to derive the comparison of the Heston and the double Heston models to design a more efficient numerical iterative splitting method. Through Li and Huang’s iterative splitting method, the numerical results conclude that the mixed method reduces the overall computational cost and improves the convergence of the iterative process while maintaining the simplicity, flexibility and interpretability of PDE methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信