Xiaoyu Qian, Lin Li, Liang Chen, Chao Shen, Jian Tang
{"title":"丹参酮 IIA 在改善甲状腺切除术后甲状旁腺功能减退症方面的机理研究","authors":"Xiaoyu Qian, Lin Li, Liang Chen, Chao Shen, Jian Tang","doi":"10.1615/critrevimmunol.2024052462","DOIUrl":null,"url":null,"abstract":"<b>Background:</b> Thyroidectomy causes impaired blood supply to the parathyroid glands, which leads to hypoparathyroidism. Tanshinone IIA (Tan IIA) is helpful in blood activation and cardiovascular protection. Therefore, the efficacy of Tan IIA in improving hypoparathyroidism was explored in this study.<br/>\n<b>Methods:</b> New Zealand white rabbits were utilized to establish a unilateral parathyroid gland ischemia injury model. The model was created by selectively ligating the main blood supply vessel of one parathyroid gland, and the rabbits were then divided into three groups receiving 1, 5, and 10 mg/kg of Tan IIA. Serum calcium and parathyroid hormone (PTH) levels were measured using specialized assay kits. Immunohistochemistry was used to assess the microvessel density (MVD) in parathyroid glands. Western blotting (WB) was used to analyze protein expression related to the PI3K/AKT signaling pathway and the pathway-associated HIF-1α and VEGF. Moreover, MMP-2 and MMP-9 involved in angiogenesis were detected by WB.<br/>\n<b>Results: </b>Tan IIA treatment effectively restored serum calcium and PTH levels in a dose-dependent manner. Notably, MVD in the parathyroid glands increased significantly, especially at higher doses. The Tan IIA treatment also elevated the p-PI3K/PI3K and p-AKT/AKT ratios, indicating that the PI3K/AKT pathway was reactivated. Moreover, Tan IIA significantly restored the decreased expression levels of VEGF and HIF-1α caused by parathyroid surgery. Additionally, Tan IIA increased MMP-2 and MMP-9 levels.<br/>\n<b>Conclusion: </b>Tan IIA activates the PI3K/AKT pathway, promotes angiogenesis by modulating VEGF, HIF-1α, MMP-2, and MMP-9, thereby further enhancing MVD within the parathyroid glands. This study demonstrates that Tan IIA improved post-thyroidectomy hypoparathyroidism.","PeriodicalId":55205,"journal":{"name":"Critical Reviews in Immunology","volume":"55 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic Insights into Tanshinone IIA in the Amelioration of Post-Thyroidectomy Hypoparathyroidism\",\"authors\":\"Xiaoyu Qian, Lin Li, Liang Chen, Chao Shen, Jian Tang\",\"doi\":\"10.1615/critrevimmunol.2024052462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<b>Background:</b> Thyroidectomy causes impaired blood supply to the parathyroid glands, which leads to hypoparathyroidism. Tanshinone IIA (Tan IIA) is helpful in blood activation and cardiovascular protection. Therefore, the efficacy of Tan IIA in improving hypoparathyroidism was explored in this study.<br/>\\n<b>Methods:</b> New Zealand white rabbits were utilized to establish a unilateral parathyroid gland ischemia injury model. The model was created by selectively ligating the main blood supply vessel of one parathyroid gland, and the rabbits were then divided into three groups receiving 1, 5, and 10 mg/kg of Tan IIA. Serum calcium and parathyroid hormone (PTH) levels were measured using specialized assay kits. Immunohistochemistry was used to assess the microvessel density (MVD) in parathyroid glands. Western blotting (WB) was used to analyze protein expression related to the PI3K/AKT signaling pathway and the pathway-associated HIF-1α and VEGF. Moreover, MMP-2 and MMP-9 involved in angiogenesis were detected by WB.<br/>\\n<b>Results: </b>Tan IIA treatment effectively restored serum calcium and PTH levels in a dose-dependent manner. Notably, MVD in the parathyroid glands increased significantly, especially at higher doses. The Tan IIA treatment also elevated the p-PI3K/PI3K and p-AKT/AKT ratios, indicating that the PI3K/AKT pathway was reactivated. Moreover, Tan IIA significantly restored the decreased expression levels of VEGF and HIF-1α caused by parathyroid surgery. Additionally, Tan IIA increased MMP-2 and MMP-9 levels.<br/>\\n<b>Conclusion: </b>Tan IIA activates the PI3K/AKT pathway, promotes angiogenesis by modulating VEGF, HIF-1α, MMP-2, and MMP-9, thereby further enhancing MVD within the parathyroid glands. This study demonstrates that Tan IIA improved post-thyroidectomy hypoparathyroidism.\",\"PeriodicalId\":55205,\"journal\":{\"name\":\"Critical Reviews in Immunology\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1615/critrevimmunol.2024052462\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1615/critrevimmunol.2024052462","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Mechanistic Insights into Tanshinone IIA in the Amelioration of Post-Thyroidectomy Hypoparathyroidism
Background: Thyroidectomy causes impaired blood supply to the parathyroid glands, which leads to hypoparathyroidism. Tanshinone IIA (Tan IIA) is helpful in blood activation and cardiovascular protection. Therefore, the efficacy of Tan IIA in improving hypoparathyroidism was explored in this study. Methods: New Zealand white rabbits were utilized to establish a unilateral parathyroid gland ischemia injury model. The model was created by selectively ligating the main blood supply vessel of one parathyroid gland, and the rabbits were then divided into three groups receiving 1, 5, and 10 mg/kg of Tan IIA. Serum calcium and parathyroid hormone (PTH) levels were measured using specialized assay kits. Immunohistochemistry was used to assess the microvessel density (MVD) in parathyroid glands. Western blotting (WB) was used to analyze protein expression related to the PI3K/AKT signaling pathway and the pathway-associated HIF-1α and VEGF. Moreover, MMP-2 and MMP-9 involved in angiogenesis were detected by WB. Results: Tan IIA treatment effectively restored serum calcium and PTH levels in a dose-dependent manner. Notably, MVD in the parathyroid glands increased significantly, especially at higher doses. The Tan IIA treatment also elevated the p-PI3K/PI3K and p-AKT/AKT ratios, indicating that the PI3K/AKT pathway was reactivated. Moreover, Tan IIA significantly restored the decreased expression levels of VEGF and HIF-1α caused by parathyroid surgery. Additionally, Tan IIA increased MMP-2 and MMP-9 levels. Conclusion: Tan IIA activates the PI3K/AKT pathway, promotes angiogenesis by modulating VEGF, HIF-1α, MMP-2, and MMP-9, thereby further enhancing MVD within the parathyroid glands. This study demonstrates that Tan IIA improved post-thyroidectomy hypoparathyroidism.
期刊介绍:
Immunology covers a broad spectrum of investigations at the genes, molecular, cellular, organ and system levels to reveal defense mechanisms against pathogens as well as protection against tumors and autoimmune diseases. The great advances in immunology in recent years make this field one of the most dynamic and rapidly growing in medical sciences. Critical ReviewsTM in Immunology (CRI) seeks to present a balanced overview of contemporary adaptive and innate immune responses related to autoimmunity, tumor, microbe, transplantation, neuroimmunology, immune regulation and immunotherapy from basic to translational aspects in health and disease. The articles that appear in CRI are mostly obtained by invitations to active investigators. But the journal will also consider proposals from the scientific community. Interested investigators should send their inquiries to the editor before submitting a manuscript.