{"title":"抑制 circ_0073932 可通过 miR-493-3p/FAF1/JNK 减轻心肌缺血再灌注损伤","authors":"Yang Su, Lili Zhao, Dongli Lei, Xiaoming Yang","doi":"10.1007/s11626-024-00900-8","DOIUrl":null,"url":null,"abstract":"<p>Oxidative stress and apoptosis play crucial roles in myocardial ischemia‒reperfusion injury (MIRI). In this study, we investigated the role of circ_0073932 in MIRI as well as its molecular mechanism. A hypoxia/reoxygenation (H/R) cardiomyocyte model was established with H9C2 cardiomyocytes, and RT–qPCR was used to measure gene expression. We observed that circ_0073932 expression was abnormally increased in the H/R cardiomyocyte model and in blood samples from MIRI patients. Inhibition of circ_0073932 suppressed H/R-induced cell apoptosis, oxidative stress (ROS, LDH and MDA), and p-JNK expression. Dual luciferase reporter assays showed that circ_0073932 targeted the downregulation of miR-493-3p, and miR-493-3p targeted the downregulation of FAF1. Furthermore, si-circ_0073932, an miR-493-3p inhibitor, oe-FAF1, or si-FAF1 were transfected into H9C2 cardiomyocytes to investigate the roles of these factors in MIRI. Our results showed that compared with the H/R group, si-circ_0073932 inhibited H/R-induced cell apoptosis, oxidative stress (ROS, LDH and MDA), and p-JNK expression. These results were reversed by the miR-493-3p inhibitor or oe-FAF1. Finally, a rat model of MIRI was established, and si-circ_0073932 was administered. Inhibition of circ_0073932 reduced the area of myocardial infarction and decreased the levels of apoptosis and oxidative stress by inhibiting the JNK signaling pathway. Our study indicated that circ_0073932 mediates MIRI via miR-493-3p/FAF1/JNK in vivo and in vitro, revealing novel insights into the pathogenesis of MIRI and providing a new target for the clinical treatment of MIRI.</p><h3 data-test=\"abstract-sub-heading\">Graphic Abstract</h3><p>Suppression of circ_0073932 can inhibit myocardial apoptosis and regulate oxidative stress in MIRI through the miR-493-3p/FAF1/JNK</p>\n","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of circ_0073932 attenuates myocardial ischemia‒reperfusion injury via miR-493-3p/FAF1/JNK\",\"authors\":\"Yang Su, Lili Zhao, Dongli Lei, Xiaoming Yang\",\"doi\":\"10.1007/s11626-024-00900-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Oxidative stress and apoptosis play crucial roles in myocardial ischemia‒reperfusion injury (MIRI). In this study, we investigated the role of circ_0073932 in MIRI as well as its molecular mechanism. A hypoxia/reoxygenation (H/R) cardiomyocyte model was established with H9C2 cardiomyocytes, and RT–qPCR was used to measure gene expression. We observed that circ_0073932 expression was abnormally increased in the H/R cardiomyocyte model and in blood samples from MIRI patients. Inhibition of circ_0073932 suppressed H/R-induced cell apoptosis, oxidative stress (ROS, LDH and MDA), and p-JNK expression. Dual luciferase reporter assays showed that circ_0073932 targeted the downregulation of miR-493-3p, and miR-493-3p targeted the downregulation of FAF1. Furthermore, si-circ_0073932, an miR-493-3p inhibitor, oe-FAF1, or si-FAF1 were transfected into H9C2 cardiomyocytes to investigate the roles of these factors in MIRI. Our results showed that compared with the H/R group, si-circ_0073932 inhibited H/R-induced cell apoptosis, oxidative stress (ROS, LDH and MDA), and p-JNK expression. These results were reversed by the miR-493-3p inhibitor or oe-FAF1. Finally, a rat model of MIRI was established, and si-circ_0073932 was administered. Inhibition of circ_0073932 reduced the area of myocardial infarction and decreased the levels of apoptosis and oxidative stress by inhibiting the JNK signaling pathway. Our study indicated that circ_0073932 mediates MIRI via miR-493-3p/FAF1/JNK in vivo and in vitro, revealing novel insights into the pathogenesis of MIRI and providing a new target for the clinical treatment of MIRI.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphic Abstract</h3><p>Suppression of circ_0073932 can inhibit myocardial apoptosis and regulate oxidative stress in MIRI through the miR-493-3p/FAF1/JNK</p>\\n\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11626-024-00900-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-024-00900-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Inhibition of circ_0073932 attenuates myocardial ischemia‒reperfusion injury via miR-493-3p/FAF1/JNK
Oxidative stress and apoptosis play crucial roles in myocardial ischemia‒reperfusion injury (MIRI). In this study, we investigated the role of circ_0073932 in MIRI as well as its molecular mechanism. A hypoxia/reoxygenation (H/R) cardiomyocyte model was established with H9C2 cardiomyocytes, and RT–qPCR was used to measure gene expression. We observed that circ_0073932 expression was abnormally increased in the H/R cardiomyocyte model and in blood samples from MIRI patients. Inhibition of circ_0073932 suppressed H/R-induced cell apoptosis, oxidative stress (ROS, LDH and MDA), and p-JNK expression. Dual luciferase reporter assays showed that circ_0073932 targeted the downregulation of miR-493-3p, and miR-493-3p targeted the downregulation of FAF1. Furthermore, si-circ_0073932, an miR-493-3p inhibitor, oe-FAF1, or si-FAF1 were transfected into H9C2 cardiomyocytes to investigate the roles of these factors in MIRI. Our results showed that compared with the H/R group, si-circ_0073932 inhibited H/R-induced cell apoptosis, oxidative stress (ROS, LDH and MDA), and p-JNK expression. These results were reversed by the miR-493-3p inhibitor or oe-FAF1. Finally, a rat model of MIRI was established, and si-circ_0073932 was administered. Inhibition of circ_0073932 reduced the area of myocardial infarction and decreased the levels of apoptosis and oxidative stress by inhibiting the JNK signaling pathway. Our study indicated that circ_0073932 mediates MIRI via miR-493-3p/FAF1/JNK in vivo and in vitro, revealing novel insights into the pathogenesis of MIRI and providing a new target for the clinical treatment of MIRI.
Graphic Abstract
Suppression of circ_0073932 can inhibit myocardial apoptosis and regulate oxidative stress in MIRI through the miR-493-3p/FAF1/JNK
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.