{"title":"通过区域选择性直接芳基化合成 3-芳基取代的三咪唑三嗪","authors":"","doi":"10.1002/ajoc.202400082","DOIUrl":null,"url":null,"abstract":"<div><p>A general and convenient selective direct arylation of the 3‐position of triimidazo[1,2‐a:1’,2’‐c:1’’,2’’‐e][1,3,5]triazine (<strong>1</strong>) with (hetero)aryl halides in DMA was successfully achieved in the presence of K<sub>2</sub>CO<sub>3</sub> as the base and a catalyst precursor consisting of Pd(OAc)<sub>2</sub> and P(2‐furyl)<sub>3</sub>. Electron‐poor and ‐rich (hetero)aryl moieties, including the strongly deactivated and sterically encumbered 2,4,6‐trimethoxyphenyl unit, are well tolerated in the electrophilic partner. The data obtained in this synthetic study support a reaction mechanism involving an electrophilic attack of an arylpalladium‐(II) halide species onto the triazine ring.</p></div>","PeriodicalId":130,"journal":{"name":"Asian Journal of Organic Chemistry","volume":"13 7","pages":"Article e202400082"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of 3‐Aryl Substituted Triimidazotriazines via Regioselective Direct Arylation\",\"authors\":\"\",\"doi\":\"10.1002/ajoc.202400082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A general and convenient selective direct arylation of the 3‐position of triimidazo[1,2‐a:1’,2’‐c:1’’,2’’‐e][1,3,5]triazine (<strong>1</strong>) with (hetero)aryl halides in DMA was successfully achieved in the presence of K<sub>2</sub>CO<sub>3</sub> as the base and a catalyst precursor consisting of Pd(OAc)<sub>2</sub> and P(2‐furyl)<sub>3</sub>. Electron‐poor and ‐rich (hetero)aryl moieties, including the strongly deactivated and sterically encumbered 2,4,6‐trimethoxyphenyl unit, are well tolerated in the electrophilic partner. The data obtained in this synthetic study support a reaction mechanism involving an electrophilic attack of an arylpalladium‐(II) halide species onto the triazine ring.</p></div>\",\"PeriodicalId\":130,\"journal\":{\"name\":\"Asian Journal of Organic Chemistry\",\"volume\":\"13 7\",\"pages\":\"Article e202400082\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2193580724001077\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2193580724001077","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Synthesis of 3‐Aryl Substituted Triimidazotriazines via Regioselective Direct Arylation
A general and convenient selective direct arylation of the 3‐position of triimidazo[1,2‐a:1’,2’‐c:1’’,2’’‐e][1,3,5]triazine (1) with (hetero)aryl halides in DMA was successfully achieved in the presence of K2CO3 as the base and a catalyst precursor consisting of Pd(OAc)2 and P(2‐furyl)3. Electron‐poor and ‐rich (hetero)aryl moieties, including the strongly deactivated and sterically encumbered 2,4,6‐trimethoxyphenyl unit, are well tolerated in the electrophilic partner. The data obtained in this synthetic study support a reaction mechanism involving an electrophilic attack of an arylpalladium‐(II) halide species onto the triazine ring.
期刊介绍:
Organic chemistry is the fundamental science that stands at the heart of chemistry, biology, and materials science. Research in these areas is vigorous and truly international, with three major regions making almost equal contributions: America, Europe and Asia. Asia now has its own top international organic chemistry journal—the Asian Journal of Organic Chemistry (AsianJOC)
The AsianJOC is designed to be a top-ranked international research journal and publishes primary research as well as critical secondary information from authors across the world. The journal covers organic chemistry in its entirety. Authors and readers come from academia, the chemical industry, and government laboratories.