Aurelien Luigi Serge Ponte, Lachlan Astfalck, Matthew Rayson, Andrew Zulberti, Nicole Jones
{"title":"推断流能、空间和时间尺度:自由漂移与定点观测","authors":"Aurelien Luigi Serge Ponte, Lachlan Astfalck, Matthew Rayson, Andrew Zulberti, Nicole Jones","doi":"10.5194/npg-2024-10","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> A novel method for the inference of spatiotemporal decomposition of oceanic variability is presented and its performance assessed in a synthetic idealized configuration. The method is designed here to ingest velocity observation. The abilities of networks of reduced number of surface drifters and moorings at inferring spatiotemporal scales of ocean variability are quantified and contrasted. The sensitivities of inference performances for both types of platforms to the number of observation, geometrical configurations, flow regimes are presented. Because they simultaneously sample spatial and temporal variability, drifters are shown to be able to capture both spatial and temporal flow properties even when deployed in isolation. Moorings are particularly adequate for the characterization of the flow temporal variability, and may also capture spatial scales provided they are multiplied and the financial and environmental costs of associated deployments can be assumed. We show in particular that the method correctly identifies whether drifters are sampling preferentially spatial vs temporal variability. This method opens novel avenues for the analysis of existing datasets as well as the design of future experimental campaigns targeting the characterization of small scale (e.g. <100 km) Ocean variability.","PeriodicalId":54714,"journal":{"name":"Nonlinear Processes in Geophysics","volume":"55 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inferring flow energy, space and time scales: freely-drifting vs fixed point observations\",\"authors\":\"Aurelien Luigi Serge Ponte, Lachlan Astfalck, Matthew Rayson, Andrew Zulberti, Nicole Jones\",\"doi\":\"10.5194/npg-2024-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> A novel method for the inference of spatiotemporal decomposition of oceanic variability is presented and its performance assessed in a synthetic idealized configuration. The method is designed here to ingest velocity observation. The abilities of networks of reduced number of surface drifters and moorings at inferring spatiotemporal scales of ocean variability are quantified and contrasted. The sensitivities of inference performances for both types of platforms to the number of observation, geometrical configurations, flow regimes are presented. Because they simultaneously sample spatial and temporal variability, drifters are shown to be able to capture both spatial and temporal flow properties even when deployed in isolation. Moorings are particularly adequate for the characterization of the flow temporal variability, and may also capture spatial scales provided they are multiplied and the financial and environmental costs of associated deployments can be assumed. We show in particular that the method correctly identifies whether drifters are sampling preferentially spatial vs temporal variability. This method opens novel avenues for the analysis of existing datasets as well as the design of future experimental campaigns targeting the characterization of small scale (e.g. <100 km) Ocean variability.\",\"PeriodicalId\":54714,\"journal\":{\"name\":\"Nonlinear Processes in Geophysics\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Processes in Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/npg-2024-10\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Processes in Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/npg-2024-10","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Inferring flow energy, space and time scales: freely-drifting vs fixed point observations
Abstract. A novel method for the inference of spatiotemporal decomposition of oceanic variability is presented and its performance assessed in a synthetic idealized configuration. The method is designed here to ingest velocity observation. The abilities of networks of reduced number of surface drifters and moorings at inferring spatiotemporal scales of ocean variability are quantified and contrasted. The sensitivities of inference performances for both types of platforms to the number of observation, geometrical configurations, flow regimes are presented. Because they simultaneously sample spatial and temporal variability, drifters are shown to be able to capture both spatial and temporal flow properties even when deployed in isolation. Moorings are particularly adequate for the characterization of the flow temporal variability, and may also capture spatial scales provided they are multiplied and the financial and environmental costs of associated deployments can be assumed. We show in particular that the method correctly identifies whether drifters are sampling preferentially spatial vs temporal variability. This method opens novel avenues for the analysis of existing datasets as well as the design of future experimental campaigns targeting the characterization of small scale (e.g. <100 km) Ocean variability.
期刊介绍:
Nonlinear Processes in Geophysics (NPG) is an international, inter-/trans-disciplinary, non-profit journal devoted to breaking the deadlocks often faced by standard approaches in Earth and space sciences. It therefore solicits disruptive and innovative concepts and methodologies, as well as original applications of these to address the ubiquitous complexity in geoscience systems, and in interacting social and biological systems. Such systems are nonlinear, with responses strongly non-proportional to perturbations, and show an associated extreme variability across scales.