{"title":"实验室和实地测量泰国热带低山地雨林中大型鸟类的水分关系、光合作用参数和水合特性","authors":"Chaiwat Boonpeng, Marisa Pischom, Pawanrat Butrid, Sutatip Noikrad, Kansri Boonpragob","doi":"10.1007/s10265-024-01542-3","DOIUrl":null,"url":null,"abstract":"<p>Ecophysiological studies of lichens in tropical Asia are rare, and additional studies can increase the understanding of lichen life in this region. The main aim of this study was to observe the relationships between water availability and photosynthetic parameters, as well as hydration trait parameters, in macrolichens during the rainy and dry seasons in a tropical forest. A total of 11 lichen species growing in a lower montane rainforest in Thailand were collected and studied. The results clearly showed that the specific thallus mass (STM), net photosynthetic rate (Pn), the potential quantum yield of primary photochemistry (Fv/Fm), chlorophyll content, and carotenoid content of almost all lichens were lower in the dry season than in the rainy season. Field measurements in the dry season revealed that only the foliose chlorolichen <i>Parmotrema tinctorum</i> was metabolically active and exhibited slight carbon assimilation. In the rainy season, all lichens started their photosynthesis in the early morning, reached maximal values, declined, and ceased when the thalli desiccated. The photosynthetically active period of the lichens was approximately 2–3 h in the morning, and the activities of the cyanolichens ended approximately 30 min after the chlorolichens. The hydration trait parameters, including the STM, maximal water content (WC<sub>max</sub>), and water holding capacity (WHC), were greater in the cyanolichens. In addition, the maximal Pn (Pn<sub>max</sub>) and optimal water content (WC<sub>opt</sub>) for Pn were also greater in the cyanolichens, but the maximal Fv/Fm (Fv/Fm<sub>max</sub>) was lower. The cyanolichens compensated for their inability to use humid air to restore photosynthesis by having higher water content and storage, higher photosynthetic rates, and longer photosynthetically active periods. This study provides additional insights into lichen ecophysiology in tropical forests that can be useful for lichen conservation.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":"10 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laboratory and field measurements of water relations, photosynthetic parameters, and hydration traits in macrolichens in a tropical lower montane rainforest in Thailand\",\"authors\":\"Chaiwat Boonpeng, Marisa Pischom, Pawanrat Butrid, Sutatip Noikrad, Kansri Boonpragob\",\"doi\":\"10.1007/s10265-024-01542-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ecophysiological studies of lichens in tropical Asia are rare, and additional studies can increase the understanding of lichen life in this region. The main aim of this study was to observe the relationships between water availability and photosynthetic parameters, as well as hydration trait parameters, in macrolichens during the rainy and dry seasons in a tropical forest. A total of 11 lichen species growing in a lower montane rainforest in Thailand were collected and studied. The results clearly showed that the specific thallus mass (STM), net photosynthetic rate (Pn), the potential quantum yield of primary photochemistry (Fv/Fm), chlorophyll content, and carotenoid content of almost all lichens were lower in the dry season than in the rainy season. Field measurements in the dry season revealed that only the foliose chlorolichen <i>Parmotrema tinctorum</i> was metabolically active and exhibited slight carbon assimilation. In the rainy season, all lichens started their photosynthesis in the early morning, reached maximal values, declined, and ceased when the thalli desiccated. The photosynthetically active period of the lichens was approximately 2–3 h in the morning, and the activities of the cyanolichens ended approximately 30 min after the chlorolichens. The hydration trait parameters, including the STM, maximal water content (WC<sub>max</sub>), and water holding capacity (WHC), were greater in the cyanolichens. In addition, the maximal Pn (Pn<sub>max</sub>) and optimal water content (WC<sub>opt</sub>) for Pn were also greater in the cyanolichens, but the maximal Fv/Fm (Fv/Fm<sub>max</sub>) was lower. The cyanolichens compensated for their inability to use humid air to restore photosynthesis by having higher water content and storage, higher photosynthetic rates, and longer photosynthetically active periods. This study provides additional insights into lichen ecophysiology in tropical forests that can be useful for lichen conservation.</p>\",\"PeriodicalId\":16813,\"journal\":{\"name\":\"Journal of Plant Research\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10265-024-01542-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-024-01542-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Laboratory and field measurements of water relations, photosynthetic parameters, and hydration traits in macrolichens in a tropical lower montane rainforest in Thailand
Ecophysiological studies of lichens in tropical Asia are rare, and additional studies can increase the understanding of lichen life in this region. The main aim of this study was to observe the relationships between water availability and photosynthetic parameters, as well as hydration trait parameters, in macrolichens during the rainy and dry seasons in a tropical forest. A total of 11 lichen species growing in a lower montane rainforest in Thailand were collected and studied. The results clearly showed that the specific thallus mass (STM), net photosynthetic rate (Pn), the potential quantum yield of primary photochemistry (Fv/Fm), chlorophyll content, and carotenoid content of almost all lichens were lower in the dry season than in the rainy season. Field measurements in the dry season revealed that only the foliose chlorolichen Parmotrema tinctorum was metabolically active and exhibited slight carbon assimilation. In the rainy season, all lichens started their photosynthesis in the early morning, reached maximal values, declined, and ceased when the thalli desiccated. The photosynthetically active period of the lichens was approximately 2–3 h in the morning, and the activities of the cyanolichens ended approximately 30 min after the chlorolichens. The hydration trait parameters, including the STM, maximal water content (WCmax), and water holding capacity (WHC), were greater in the cyanolichens. In addition, the maximal Pn (Pnmax) and optimal water content (WCopt) for Pn were also greater in the cyanolichens, but the maximal Fv/Fm (Fv/Fmmax) was lower. The cyanolichens compensated for their inability to use humid air to restore photosynthesis by having higher water content and storage, higher photosynthetic rates, and longer photosynthetically active periods. This study provides additional insights into lichen ecophysiology in tropical forests that can be useful for lichen conservation.
期刊介绍:
The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology.
The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.