平面上一类具有弱作用力势能的奇异哈密顿系统的非碰撞轨道

IF 1.4 4区 数学 Q1 MATHEMATICS
Mohamed Antabli, Morched Boughariou
{"title":"平面上一类具有弱作用力势能的奇异哈密顿系统的非碰撞轨道","authors":"Mohamed Antabli, Morched Boughariou","doi":"10.1007/s10884-024-10363-w","DOIUrl":null,"url":null,"abstract":"<p>We study the existence of non-collision orbits for a class of singular Hamiltonian systems </p><span>$$\\begin{aligned} \\ddot{q}+ V'(q)=0 \\end{aligned}$$</span><p>where <span>\\(q:{\\mathbb {R}} \\longrightarrow {\\mathbb {R}}^2\\)</span> and <span>\\(V\\in C^2({\\mathbb {R}}^2 {\\setminus } \\{e\\},\\, {\\mathbb {R}})\\)</span> is a potential with a singularity at a point <span>\\(e\\not =0\\)</span>. We consider <i>V</i> which behaves like <span>\\(\\displaystyle -1/|q-e|^\\alpha \\)</span> as <span>\\( q\\rightarrow e \\)</span> with <span>\\(\\alpha \\in ]0,2[.\\)</span> Under the assumption that 0 is a strict global maximum for <i>V</i>, we establish the existence of a homoclinic orbit emanating from 0. Moreover, in case <span>\\(\\displaystyle V(q) \\longrightarrow 0\\)</span> as <span>\\(|q|\\rightarrow +\\infty \\)</span>, we prove the existence of a heteroclinic orbit “at infinity\" i.e. a solution <i>q</i> such that </p><span>$$\\begin{aligned} \\lim _{t\\rightarrow -\\infty } q(t)=0,\\,\\, \\lim _{t \\rightarrow +\\infty }|q(t)|=+\\infty \\,\\, \\hbox {and} \\, \\lim _{t \\rightarrow \\pm \\infty }\\dot{q}(t)=0. \\end{aligned}$$</span>","PeriodicalId":15624,"journal":{"name":"Journal of Dynamics and Differential Equations","volume":"35 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-collision Orbits for a Class of Singular Hamiltonian Systems on the Plane with Weak Force Potentials\",\"authors\":\"Mohamed Antabli, Morched Boughariou\",\"doi\":\"10.1007/s10884-024-10363-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the existence of non-collision orbits for a class of singular Hamiltonian systems </p><span>$$\\\\begin{aligned} \\\\ddot{q}+ V'(q)=0 \\\\end{aligned}$$</span><p>where <span>\\\\(q:{\\\\mathbb {R}} \\\\longrightarrow {\\\\mathbb {R}}^2\\\\)</span> and <span>\\\\(V\\\\in C^2({\\\\mathbb {R}}^2 {\\\\setminus } \\\\{e\\\\},\\\\, {\\\\mathbb {R}})\\\\)</span> is a potential with a singularity at a point <span>\\\\(e\\\\not =0\\\\)</span>. We consider <i>V</i> which behaves like <span>\\\\(\\\\displaystyle -1/|q-e|^\\\\alpha \\\\)</span> as <span>\\\\( q\\\\rightarrow e \\\\)</span> with <span>\\\\(\\\\alpha \\\\in ]0,2[.\\\\)</span> Under the assumption that 0 is a strict global maximum for <i>V</i>, we establish the existence of a homoclinic orbit emanating from 0. Moreover, in case <span>\\\\(\\\\displaystyle V(q) \\\\longrightarrow 0\\\\)</span> as <span>\\\\(|q|\\\\rightarrow +\\\\infty \\\\)</span>, we prove the existence of a heteroclinic orbit “at infinity\\\" i.e. a solution <i>q</i> such that </p><span>$$\\\\begin{aligned} \\\\lim _{t\\\\rightarrow -\\\\infty } q(t)=0,\\\\,\\\\, \\\\lim _{t \\\\rightarrow +\\\\infty }|q(t)|=+\\\\infty \\\\,\\\\, \\\\hbox {and} \\\\, \\\\lim _{t \\\\rightarrow \\\\pm \\\\infty }\\\\dot{q}(t)=0. \\\\end{aligned}$$</span>\",\"PeriodicalId\":15624,\"journal\":{\"name\":\"Journal of Dynamics and Differential Equations\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamics and Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10884-024-10363-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamics and Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10884-024-10363-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一类奇异哈密顿系统的非碰撞轨道的存在性 $$\begin{aligned}\ddot{q}+ V'(q)=0 \end{aligned}$$ 其中 \(q:{)和(V(in C^2({\mathbb {R}}^2 {setminus } \{e\},\,{/mathbb {R}}))是一个在点(e/not =0)有奇点的势。我们认为V的行为类似于(q|arrow e)的(displaystyle -1/|q-e|^\alpha),而(alpha)在0,2[.\]中。 在0是V的严格全局最大值的假设下,我们建立了一个从0出发的同次轨道的存在性。此外,在((displaystyle V(q) \longrightarrow 0\) as \(|q|\rightarrow +\infty \))的情况下,我们证明了 "无穷大 "处异次元轨道的存在,即一个解q,使得$$\begin{aligned}。\q(t)=0, \lim _{t \rightarrow +\infty }|q(t)|=\+infty \, \hbox {and}\end{aligned}$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-collision Orbits for a Class of Singular Hamiltonian Systems on the Plane with Weak Force Potentials

We study the existence of non-collision orbits for a class of singular Hamiltonian systems

$$\begin{aligned} \ddot{q}+ V'(q)=0 \end{aligned}$$

where \(q:{\mathbb {R}} \longrightarrow {\mathbb {R}}^2\) and \(V\in C^2({\mathbb {R}}^2 {\setminus } \{e\},\, {\mathbb {R}})\) is a potential with a singularity at a point \(e\not =0\). We consider V which behaves like \(\displaystyle -1/|q-e|^\alpha \) as \( q\rightarrow e \) with \(\alpha \in ]0,2[.\) Under the assumption that 0 is a strict global maximum for V, we establish the existence of a homoclinic orbit emanating from 0. Moreover, in case \(\displaystyle V(q) \longrightarrow 0\) as \(|q|\rightarrow +\infty \), we prove the existence of a heteroclinic orbit “at infinity" i.e. a solution q such that

$$\begin{aligned} \lim _{t\rightarrow -\infty } q(t)=0,\,\, \lim _{t \rightarrow +\infty }|q(t)|=+\infty \,\, \hbox {and} \, \lim _{t \rightarrow \pm \infty }\dot{q}(t)=0. \end{aligned}$$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
7.70%
发文量
116
审稿时长
>12 weeks
期刊介绍: Journal of Dynamics and Differential Equations serves as an international forum for the publication of high-quality, peer-reviewed original papers in the field of mathematics, biology, engineering, physics, and other areas of science. The dynamical issues treated in the journal cover all the classical topics, including attractors, bifurcation theory, connection theory, dichotomies, stability theory and transversality, as well as topics in new and emerging areas of the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信