Muhamad Faizal Zainudin, Salmah Anim Abu Hassan, Nyein Yin Khin
{"title":"用 NeuroAiD 促进完全性脊髓损伤患者的神经功能恢复:病例报告","authors":"Muhamad Faizal Zainudin, Salmah Anim Abu Hassan, Nyein Yin Khin","doi":"10.1038/s41394-024-00632-7","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Introduction</h3><p>NeuroAiD (MLC601 & MLC901)’s neuroprotective capabilities include limiting exaggerated calcium influx, decreasing excitotoxicity, reducing oxidative stress, and preventing glutamate-induced cell death. It has also been shown to facilitate synaptogenesis, neurogenesis, and neuroplasticity. However, its clinical efficacy has primarily been studied in the context of brain injuries, particularly stroke. NeuroAiD’s potential application in SCI remains largely untapped.</p><h3 data-test=\"abstract-sub-heading\">Case presentation</h3><p>A 34-year-old male presented with C4 complete tetraplegia. Following surgical decompression and initial inpatient rehabilitation, he started consuming MLC901 two capsules three times daily at month 4 post injury for 6 months. He regained considerable neurological recovery following the supplementation. Apart from the improvement in the neurological level of injury, the patient exhibited motor recovery beyond the initial zone of partial preservation up to 24 months post injury.</p><h3 data-test=\"abstract-sub-heading\">Discussion</h3><p>Our findings align with a recent animal study demonstrating MLC901’s potential to downregulate Vascular Endothelial Growth Factor (VEGF), a molecule known to increase vascular permeability and exacerbate tissue edema and infarction. In another animal study involving stroke-affected mice, MLC901 demonstrates the ability to promote neurological recovery by regulating the expression of proteins mediating angiogenesis, such as hypoxic inducible factor 1α, erythropoietin, angiopoietins 1 and 2, as well as VEGF. The anecdotal findings from this case report offer preliminary insights into NeuroAiD’s potential in facilitating recovery during post-acute and chronic phases of severe SCI, necessitating further exploration.</p>","PeriodicalId":22079,"journal":{"name":"Spinal Cord Series and Cases","volume":"76 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facilitation of neurological recovery in a complete spinal cord injury with NeuroAiD: case report\",\"authors\":\"Muhamad Faizal Zainudin, Salmah Anim Abu Hassan, Nyein Yin Khin\",\"doi\":\"10.1038/s41394-024-00632-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Introduction</h3><p>NeuroAiD (MLC601 & MLC901)’s neuroprotective capabilities include limiting exaggerated calcium influx, decreasing excitotoxicity, reducing oxidative stress, and preventing glutamate-induced cell death. It has also been shown to facilitate synaptogenesis, neurogenesis, and neuroplasticity. However, its clinical efficacy has primarily been studied in the context of brain injuries, particularly stroke. NeuroAiD’s potential application in SCI remains largely untapped.</p><h3 data-test=\\\"abstract-sub-heading\\\">Case presentation</h3><p>A 34-year-old male presented with C4 complete tetraplegia. Following surgical decompression and initial inpatient rehabilitation, he started consuming MLC901 two capsules three times daily at month 4 post injury for 6 months. He regained considerable neurological recovery following the supplementation. Apart from the improvement in the neurological level of injury, the patient exhibited motor recovery beyond the initial zone of partial preservation up to 24 months post injury.</p><h3 data-test=\\\"abstract-sub-heading\\\">Discussion</h3><p>Our findings align with a recent animal study demonstrating MLC901’s potential to downregulate Vascular Endothelial Growth Factor (VEGF), a molecule known to increase vascular permeability and exacerbate tissue edema and infarction. In another animal study involving stroke-affected mice, MLC901 demonstrates the ability to promote neurological recovery by regulating the expression of proteins mediating angiogenesis, such as hypoxic inducible factor 1α, erythropoietin, angiopoietins 1 and 2, as well as VEGF. The anecdotal findings from this case report offer preliminary insights into NeuroAiD’s potential in facilitating recovery during post-acute and chronic phases of severe SCI, necessitating further exploration.</p>\",\"PeriodicalId\":22079,\"journal\":{\"name\":\"Spinal Cord Series and Cases\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spinal Cord Series and Cases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41394-024-00632-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spinal Cord Series and Cases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41394-024-00632-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Facilitation of neurological recovery in a complete spinal cord injury with NeuroAiD: case report
Introduction
NeuroAiD (MLC601 & MLC901)’s neuroprotective capabilities include limiting exaggerated calcium influx, decreasing excitotoxicity, reducing oxidative stress, and preventing glutamate-induced cell death. It has also been shown to facilitate synaptogenesis, neurogenesis, and neuroplasticity. However, its clinical efficacy has primarily been studied in the context of brain injuries, particularly stroke. NeuroAiD’s potential application in SCI remains largely untapped.
Case presentation
A 34-year-old male presented with C4 complete tetraplegia. Following surgical decompression and initial inpatient rehabilitation, he started consuming MLC901 two capsules three times daily at month 4 post injury for 6 months. He regained considerable neurological recovery following the supplementation. Apart from the improvement in the neurological level of injury, the patient exhibited motor recovery beyond the initial zone of partial preservation up to 24 months post injury.
Discussion
Our findings align with a recent animal study demonstrating MLC901’s potential to downregulate Vascular Endothelial Growth Factor (VEGF), a molecule known to increase vascular permeability and exacerbate tissue edema and infarction. In another animal study involving stroke-affected mice, MLC901 demonstrates the ability to promote neurological recovery by regulating the expression of proteins mediating angiogenesis, such as hypoxic inducible factor 1α, erythropoietin, angiopoietins 1 and 2, as well as VEGF. The anecdotal findings from this case report offer preliminary insights into NeuroAiD’s potential in facilitating recovery during post-acute and chronic phases of severe SCI, necessitating further exploration.