综合评估吸入健康风险和改善石化工业区环境目标挥发性有机化合物的经济效益

IF 2.9 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Wissawa Malakan, Sarawut Thepanondh, Jutarat Keawboonchu, Vanitchaya Kultan, Akira Kondo, Hikari Shimadera
{"title":"综合评估吸入健康风险和改善石化工业区环境目标挥发性有机化合物的经济效益","authors":"Wissawa Malakan,&nbsp;Sarawut Thepanondh,&nbsp;Jutarat Keawboonchu,&nbsp;Vanitchaya Kultan,&nbsp;Akira Kondo,&nbsp;Hikari Shimadera","doi":"10.1007/s11869-024-01552-z","DOIUrl":null,"url":null,"abstract":"<div><p>The Maptaphut industrial area, one of the largest petrochemical complexes in Thailand, is the major cause of the various air pollutants. The larger concern is that a significant volume of air pollution is emitted and that air quality management needs to be improved. This is in part due to a lack of deeper understanding of how anthropogenic emissions are emitted from different sources in this area— especially volatile organic compounds (VOCs). Moreover, it has complicated relationship results of air pollution, disease mechanisms, and health effects. As a result, its available data can only give a rough indication of them. These factors are often assumed to be associated with economic consequences, but assessing the health-related economic losses caused by air pollution remains limited in many ways.</p><p>Four targeted VOCs were analyzed, including benzene, 1,3-butadiene, 1,2-dichloroethane, and vinyl chloride from industrial and non-industrial sources, namely stacks, flares, storage tanks, wastewater treatment plants, transportation and marketing, fugitive losses, slurry/open equipment/vessel, and on-road mobile emissions. Source apportionment can be conducted using emissions inventory (EI) to establish pollution source databases, the dispersion model, and then imported on the risk model by determining receptors. The AERMOD dispersion model coupled with the IRAP-h view model was used to predict the spatial distribution of the ground-level concentration and analyze the inhalation health risk covering cancer and non-cancer risks— as well as the prioritization of pollutants.</p><p>The risk assessment results indicated that the highest risk occurred most from 1,3-butadiene for cancer and chronic non-cancer risks contributed to fugitive sources, about 83% and 94%, and most benzenes for acute non-cancer risk contributed to on-road mobile sources, at about 56%.</p><p>Consequently, the benzene classified as the most important priority depending on its risk results, comprehensive epidemiological studies, and discharge volumes.</p><p>With the economic benefits assessment, BenMAP-CE was further utilized to estimate the health impacts and economic value of multiple scenarios to facilitate decision-making for benzene reduction. Overall, the 10% rollback policy for benzene concentration, monetized value of about 13.13 billion US dollars for all mortalities, gave the best practical scenario for the most economically viable option based on the B/C (benefit/cost) ratio results in Maptaphut. Ultimately, policymakers need to take additional measures to improve air quality and reduce health impacts while also considering economic benefits, especially benzene reduction.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11869-024-01552-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Integrated assessment of inhalation health risk and economic benefit of improving ambient targeted VOCs in Petrochemical industrial area\",\"authors\":\"Wissawa Malakan,&nbsp;Sarawut Thepanondh,&nbsp;Jutarat Keawboonchu,&nbsp;Vanitchaya Kultan,&nbsp;Akira Kondo,&nbsp;Hikari Shimadera\",\"doi\":\"10.1007/s11869-024-01552-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Maptaphut industrial area, one of the largest petrochemical complexes in Thailand, is the major cause of the various air pollutants. The larger concern is that a significant volume of air pollution is emitted and that air quality management needs to be improved. This is in part due to a lack of deeper understanding of how anthropogenic emissions are emitted from different sources in this area— especially volatile organic compounds (VOCs). Moreover, it has complicated relationship results of air pollution, disease mechanisms, and health effects. As a result, its available data can only give a rough indication of them. These factors are often assumed to be associated with economic consequences, but assessing the health-related economic losses caused by air pollution remains limited in many ways.</p><p>Four targeted VOCs were analyzed, including benzene, 1,3-butadiene, 1,2-dichloroethane, and vinyl chloride from industrial and non-industrial sources, namely stacks, flares, storage tanks, wastewater treatment plants, transportation and marketing, fugitive losses, slurry/open equipment/vessel, and on-road mobile emissions. Source apportionment can be conducted using emissions inventory (EI) to establish pollution source databases, the dispersion model, and then imported on the risk model by determining receptors. The AERMOD dispersion model coupled with the IRAP-h view model was used to predict the spatial distribution of the ground-level concentration and analyze the inhalation health risk covering cancer and non-cancer risks— as well as the prioritization of pollutants.</p><p>The risk assessment results indicated that the highest risk occurred most from 1,3-butadiene for cancer and chronic non-cancer risks contributed to fugitive sources, about 83% and 94%, and most benzenes for acute non-cancer risk contributed to on-road mobile sources, at about 56%.</p><p>Consequently, the benzene classified as the most important priority depending on its risk results, comprehensive epidemiological studies, and discharge volumes.</p><p>With the economic benefits assessment, BenMAP-CE was further utilized to estimate the health impacts and economic value of multiple scenarios to facilitate decision-making for benzene reduction. Overall, the 10% rollback policy for benzene concentration, monetized value of about 13.13 billion US dollars for all mortalities, gave the best practical scenario for the most economically viable option based on the B/C (benefit/cost) ratio results in Maptaphut. Ultimately, policymakers need to take additional measures to improve air quality and reduce health impacts while also considering economic benefits, especially benzene reduction.</p></div>\",\"PeriodicalId\":49109,\"journal\":{\"name\":\"Air Quality Atmosphere and Health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11869-024-01552-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Air Quality Atmosphere and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11869-024-01552-z\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Quality Atmosphere and Health","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11869-024-01552-z","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

Maptaphut 工业区是泰国最大的石化联合企业之一,是造成各种空气污染物的主要原因。更令人担忧的是,大量的空气污染被排放,空气质量管理亟待改善。这部分是由于对该地区不同来源的人为排放物--尤其是挥发性有机化合物 (VOC) 的排放情况缺乏深入了解。此外,空气污染、疾病机制和健康影响之间的关系也很复杂。因此,其现有数据只能给出一个粗略的指示。分析了四种目标挥发性有机化合物,包括苯、1,3-丁二烯、1,2-二氯乙烷和氯乙烯,这些挥发性有机化合物来自工业和非工业源,即烟囱、火炬、储罐、污水处理厂、运输和销售、逸散损失、泥浆/露天设备/容器和道路移动排放。可以利用排放清单(EI)建立污染源数据库、扩散模型,然后通过确定受体导入风险模型,进行污染源分配。风险评估结果表明,1,3-丁二烯的致癌和慢性非致癌风险最高,约 83% 和 94%,而苯的急性非致癌风险最高,约 56%。因此,根据其风险结果、综合流行病学研究和排放量,苯被归类为最重要的优先事项。通过经济效益评估,BenMAP-CE 被进一步用于估算多种方案的健康影响和经济价值,以促进苯减排的决策。总体而言,根据 Maptaphut 中的 B/C(效益/成本)比率结果,苯浓度回退 10%的政策(所有死亡率的货币化价值约为 131.3 亿美元)是经济上最可行的最佳实际方案。最终,决策者需要采取更多措施来改善空气质量,减少对健康的影响,同时也要考虑经济效益,尤其是减少苯的排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated assessment of inhalation health risk and economic benefit of improving ambient targeted VOCs in Petrochemical industrial area

The Maptaphut industrial area, one of the largest petrochemical complexes in Thailand, is the major cause of the various air pollutants. The larger concern is that a significant volume of air pollution is emitted and that air quality management needs to be improved. This is in part due to a lack of deeper understanding of how anthropogenic emissions are emitted from different sources in this area— especially volatile organic compounds (VOCs). Moreover, it has complicated relationship results of air pollution, disease mechanisms, and health effects. As a result, its available data can only give a rough indication of them. These factors are often assumed to be associated with economic consequences, but assessing the health-related economic losses caused by air pollution remains limited in many ways.

Four targeted VOCs were analyzed, including benzene, 1,3-butadiene, 1,2-dichloroethane, and vinyl chloride from industrial and non-industrial sources, namely stacks, flares, storage tanks, wastewater treatment plants, transportation and marketing, fugitive losses, slurry/open equipment/vessel, and on-road mobile emissions. Source apportionment can be conducted using emissions inventory (EI) to establish pollution source databases, the dispersion model, and then imported on the risk model by determining receptors. The AERMOD dispersion model coupled with the IRAP-h view model was used to predict the spatial distribution of the ground-level concentration and analyze the inhalation health risk covering cancer and non-cancer risks— as well as the prioritization of pollutants.

The risk assessment results indicated that the highest risk occurred most from 1,3-butadiene for cancer and chronic non-cancer risks contributed to fugitive sources, about 83% and 94%, and most benzenes for acute non-cancer risk contributed to on-road mobile sources, at about 56%.

Consequently, the benzene classified as the most important priority depending on its risk results, comprehensive epidemiological studies, and discharge volumes.

With the economic benefits assessment, BenMAP-CE was further utilized to estimate the health impacts and economic value of multiple scenarios to facilitate decision-making for benzene reduction. Overall, the 10% rollback policy for benzene concentration, monetized value of about 13.13 billion US dollars for all mortalities, gave the best practical scenario for the most economically viable option based on the B/C (benefit/cost) ratio results in Maptaphut. Ultimately, policymakers need to take additional measures to improve air quality and reduce health impacts while also considering economic benefits, especially benzene reduction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Air Quality Atmosphere and Health
Air Quality Atmosphere and Health ENVIRONMENTAL SCIENCES-
CiteScore
8.80
自引率
2.00%
发文量
146
审稿时长
>12 weeks
期刊介绍: Air Quality, Atmosphere, and Health is a multidisciplinary journal which, by its very name, illustrates the broad range of work it publishes and which focuses on atmospheric consequences of human activities and their implications for human and ecological health. It offers research papers, critical literature reviews and commentaries, as well as special issues devoted to topical subjects or themes. International in scope, the journal presents papers that inform and stimulate a global readership, as the topic addressed are global in their import. Consequently, we do not encourage submission of papers involving local data that relate to local problems. Unless they demonstrate wide applicability, these are better submitted to national or regional journals. Air Quality, Atmosphere & Health addresses such topics as acid precipitation; airborne particulate matter; air quality monitoring and management; exposure assessment; risk assessment; indoor air quality; atmospheric chemistry; atmospheric modeling and prediction; air pollution climatology; climate change and air quality; air pollution measurement; atmospheric impact assessment; forest-fire emissions; atmospheric science; greenhouse gases; health and ecological effects; clean air technology; regional and global change and satellite measurements. This journal benefits a diverse audience of researchers, public health officials and policy makers addressing problems that call for solutions based in evidence from atmospheric and exposure assessment scientists, epidemiologists, and risk assessors. Publication in the journal affords the opportunity to reach beyond defined disciplinary niches to this broader readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信