非交换 L0 空间的线性等距性

IF 0.8 3区 数学 Q2 MATHEMATICS
Aleksey Ber, Jinghao Huang, Fedor Sukochev
{"title":"非交换 L0 空间的线性等距性","authors":"Aleksey Ber,&nbsp;Jinghao Huang,&nbsp;Fedor Sukochev","doi":"10.1112/blms.13044","DOIUrl":null,"url":null,"abstract":"<p>The description of (commutative and noncommutative) <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mi>p</mi>\n </msub>\n <annotation>$L_p$</annotation>\n </semantics></math>-isometries has been studied thoroughly since the seminal work of Banach. In the present paper, we provide a complete description for the limiting case, isometries on noncommutative <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mn>0</mn>\n </msub>\n <annotation>$L_0$</annotation>\n </semantics></math>-spaces, which extends the Banach–Stone theorem and Kadison's theorem for isometries of von Neumann algebras. The result is new even in the commutative setting.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 6","pages":"2075-2092"},"PeriodicalIF":0.8000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear isometries of noncommutative \\n \\n \\n L\\n 0\\n \\n $L_0$\\n -spaces\",\"authors\":\"Aleksey Ber,&nbsp;Jinghao Huang,&nbsp;Fedor Sukochev\",\"doi\":\"10.1112/blms.13044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The description of (commutative and noncommutative) <span></span><math>\\n <semantics>\\n <msub>\\n <mi>L</mi>\\n <mi>p</mi>\\n </msub>\\n <annotation>$L_p$</annotation>\\n </semantics></math>-isometries has been studied thoroughly since the seminal work of Banach. In the present paper, we provide a complete description for the limiting case, isometries on noncommutative <span></span><math>\\n <semantics>\\n <msub>\\n <mi>L</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>$L_0$</annotation>\\n </semantics></math>-spaces, which extends the Banach–Stone theorem and Kadison's theorem for isometries of von Neumann algebras. The result is new even in the commutative setting.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 6\",\"pages\":\"2075-2092\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13044\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13044","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

自巴纳赫的开创性工作以来,人们对(交换和非交换)Lp$L_p$-等距的描述进行了深入研究。在本文中,我们对极限情况,即非交换 L0$L_0$ 空间上的等距进行了完整的描述,扩展了巴纳赫-斯通定理和卡迪森定理对冯-诺依曼代数方程等距的描述。这一结果即使在交换环境中也是全新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear isometries of noncommutative L 0 $L_0$ -spaces

The description of (commutative and noncommutative) L p $L_p$ -isometries has been studied thoroughly since the seminal work of Banach. In the present paper, we provide a complete description for the limiting case, isometries on noncommutative L 0 $L_0$ -spaces, which extends the Banach–Stone theorem and Kadison's theorem for isometries of von Neumann algebras. The result is new even in the commutative setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信