{"title":"多阳离子插层电催化水氧化过程中层状双氢氧化物的去质子化","authors":"Bowen Jin, Jianxiong Gao, Yunqi Zhang, Mingfei Shao","doi":"10.1002/smo.20230026","DOIUrl":null,"url":null,"abstract":"Aqueous rechargeable batteries using abundant multi-ion cations have received increasing attention in the energy storage field for their high safety and low cost. Layered double hydroxides (LDHs) possess a two-dimensional structure and exhibit great potential as cathodes for multi-ion intercalation. However, the insufficient active sites of LDHs result in low capacities in the discharging process. Interestingly, the LDHs after the deprotonation process exhibit favorable electrochemical performance of multi-cation intercalation. The deprotonation process of LDHs has been widely found in the oxygen evolution reaction and energy storage field, where LDHs lose H in laminates and converts to deprotonated <i>γ</i>-phase MOOHs (MOOs). Herein, we take a comprehensive overview of the dynamics structure transformation of the deprotonation process of LDHs. Furthermore, the development of advanced aqueous battery cathode and metal battery anode based on deprotonated LDHs for energy storage is explored and summarized. Finally, the perspective of deprotonated LDHs in the energy storage field is discussed.","PeriodicalId":501601,"journal":{"name":"Smart Molecules","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deprotonated of layered double hydroxides during electrocatalytic water oxidation for multi-cations intercalation\",\"authors\":\"Bowen Jin, Jianxiong Gao, Yunqi Zhang, Mingfei Shao\",\"doi\":\"10.1002/smo.20230026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aqueous rechargeable batteries using abundant multi-ion cations have received increasing attention in the energy storage field for their high safety and low cost. Layered double hydroxides (LDHs) possess a two-dimensional structure and exhibit great potential as cathodes for multi-ion intercalation. However, the insufficient active sites of LDHs result in low capacities in the discharging process. Interestingly, the LDHs after the deprotonation process exhibit favorable electrochemical performance of multi-cation intercalation. The deprotonation process of LDHs has been widely found in the oxygen evolution reaction and energy storage field, where LDHs lose H in laminates and converts to deprotonated <i>γ</i>-phase MOOHs (MOOs). Herein, we take a comprehensive overview of the dynamics structure transformation of the deprotonation process of LDHs. Furthermore, the development of advanced aqueous battery cathode and metal battery anode based on deprotonated LDHs for energy storage is explored and summarized. Finally, the perspective of deprotonated LDHs in the energy storage field is discussed.\",\"PeriodicalId\":501601,\"journal\":{\"name\":\"Smart Molecules\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Molecules\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smo.20230026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Molecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smo.20230026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deprotonated of layered double hydroxides during electrocatalytic water oxidation for multi-cations intercalation
Aqueous rechargeable batteries using abundant multi-ion cations have received increasing attention in the energy storage field for their high safety and low cost. Layered double hydroxides (LDHs) possess a two-dimensional structure and exhibit great potential as cathodes for multi-ion intercalation. However, the insufficient active sites of LDHs result in low capacities in the discharging process. Interestingly, the LDHs after the deprotonation process exhibit favorable electrochemical performance of multi-cation intercalation. The deprotonation process of LDHs has been widely found in the oxygen evolution reaction and energy storage field, where LDHs lose H in laminates and converts to deprotonated γ-phase MOOHs (MOOs). Herein, we take a comprehensive overview of the dynamics structure transformation of the deprotonation process of LDHs. Furthermore, the development of advanced aqueous battery cathode and metal battery anode based on deprotonated LDHs for energy storage is explored and summarized. Finally, the perspective of deprotonated LDHs in the energy storage field is discussed.