含胶原改性聚乳酸-羟基乳酸共聚物微球并负载四甲基吡嗪的复合水凝胶可促进关节软骨修复

IF 4.4 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yalan Pan, Bin Li, Xiaoxian Sun, Pengcheng Tu, Yang Guo, Zitong Zhao, Mao Wu, Yun Wang, Zhifang Wang, Yong Ma
{"title":"含胶原改性聚乳酸-羟基乳酸共聚物微球并负载四甲基吡嗪的复合水凝胶可促进关节软骨修复","authors":"Yalan Pan,&nbsp;Bin Li,&nbsp;Xiaoxian Sun,&nbsp;Pengcheng Tu,&nbsp;Yang Guo,&nbsp;Zitong Zhao,&nbsp;Mao Wu,&nbsp;Yun Wang,&nbsp;Zhifang Wang,&nbsp;Yong Ma","doi":"10.1002/mabi.202400003","DOIUrl":null,"url":null,"abstract":"<p>Articular cartilage defects pose a significant challenge due to the limited self-healing ability of cartilage. However, traditional techniques face limitations including autologous chondrocyte expansion issues. This study aims to investigate the effects of the polylactic acid-glycolic acid (PLGA) and collagen-surface modified polylactic acid-glycolic acid (CPLGA) microspheres loaded with tetramethylpyrazine (TMP) on two cell types and the regeneration potential of articular cartilage. CPLGA microspheres are prepared by Steglich reaction and characterized. They evaluated the effect of TMP-loaded microspheres on HUVECs (Human Umbilical Vein Endothelial Cells) and examined the compatibility of blank microspheres with BMSCs (Bone marrow mesenchymal stromal cells) and their potential to promote cartilage differentiation. Subcutaneous implant immune tests and cartilage defect treatment are conducted to assess biocompatibility and cartilage repair potential. The results highlight the efficacy of CPLGA microspheres in promoting tissue regeneration, attributed to improved hydrophilicity and collagen-induced mitigation of degradation. Under hypoxic conditions, both CPLGA and PLGA TMP-loaded microspheres exhibit inhibitory effects on HUVEC proliferation, migration, and angiogenesis. Notably, CPLGA microspheres show enhanced compatibility with BMSCs, facilitating chondrogenic differentiation. Moreover, the CPLGA microsphere-composite hydrogel exhibits potential for cartilage repair by modulating angiogenesis and promoting BMSC differentiation.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composite Hydrogel Containing Collagen-Modified Polylactic Acid-Hydroxylactic Acid Copolymer Microspheres Loaded with Tetramethylpyrazine Promotes Articular Cartilage Repair\",\"authors\":\"Yalan Pan,&nbsp;Bin Li,&nbsp;Xiaoxian Sun,&nbsp;Pengcheng Tu,&nbsp;Yang Guo,&nbsp;Zitong Zhao,&nbsp;Mao Wu,&nbsp;Yun Wang,&nbsp;Zhifang Wang,&nbsp;Yong Ma\",\"doi\":\"10.1002/mabi.202400003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Articular cartilage defects pose a significant challenge due to the limited self-healing ability of cartilage. However, traditional techniques face limitations including autologous chondrocyte expansion issues. This study aims to investigate the effects of the polylactic acid-glycolic acid (PLGA) and collagen-surface modified polylactic acid-glycolic acid (CPLGA) microspheres loaded with tetramethylpyrazine (TMP) on two cell types and the regeneration potential of articular cartilage. CPLGA microspheres are prepared by Steglich reaction and characterized. They evaluated the effect of TMP-loaded microspheres on HUVECs (Human Umbilical Vein Endothelial Cells) and examined the compatibility of blank microspheres with BMSCs (Bone marrow mesenchymal stromal cells) and their potential to promote cartilage differentiation. Subcutaneous implant immune tests and cartilage defect treatment are conducted to assess biocompatibility and cartilage repair potential. The results highlight the efficacy of CPLGA microspheres in promoting tissue regeneration, attributed to improved hydrophilicity and collagen-induced mitigation of degradation. Under hypoxic conditions, both CPLGA and PLGA TMP-loaded microspheres exhibit inhibitory effects on HUVEC proliferation, migration, and angiogenesis. Notably, CPLGA microspheres show enhanced compatibility with BMSCs, facilitating chondrogenic differentiation. Moreover, the CPLGA microsphere-composite hydrogel exhibits potential for cartilage repair by modulating angiogenesis and promoting BMSC differentiation.</p>\",\"PeriodicalId\":18103,\"journal\":{\"name\":\"Macromolecular bioscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular bioscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mabi.202400003\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mabi.202400003","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于软骨的自我愈合能力有限,关节软骨缺损是一项重大挑战。然而,传统技术面临着自体软骨细胞扩增问题等局限性。本研究旨在探讨胶原表面修饰的聚乳酸-乙醇酸(PLGA)微球(CPLGA)负载四甲基吡嗪(TMP)对两种细胞类型的影响以及关节软骨的再生潜力。PLGA 微球采用乳化-溶剂蒸发法制造,然后通过 Steglich 反应在表面接枝 II 型胶原蛋白。利用傅立叶变换红外光谱、XPS 和荧光标记对微球进行鉴定。此外,还对微球的蛋白质接枝率、物理性质、药物负载和药物释放曲线进行了表征。我们评估了负载 TMP 的微球对 HUVEC 增殖和迁移的影响,检测了 HUVEC 的抗氧化能力、血管生成和凋亡相关基因的表达,并评估了空白微球与骨髓间充质干细胞的相容性及其促进软骨分化的潜力。我们评估了微球与骨髓间充质干细胞的相容性及其促进软骨分化的潜力。我们还进行了皮下植入免疫试验和软骨缺损治疗,以评估生物相容性和软骨修复潜力。结果表明,CPLGA 微球具有促进组织再生的功效,这归功于其亲水性的改善和胶原蛋白诱导的降解缓解。在缺氧条件下,CPLGA 和 PLGA TMP 负载微球对 HUVEC 的增殖、迁移和血管生成都有抑制作用。值得注意的是,CPLGA 微球与 BMSCs 的相容性增强,有利于软骨分化。此外,CPLGA 微球复合水凝胶通过调节血管生成和促进 BMSC 分化,显示出软骨修复的潜力。本文受版权保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Composite Hydrogel Containing Collagen-Modified Polylactic Acid-Hydroxylactic Acid Copolymer Microspheres Loaded with Tetramethylpyrazine Promotes Articular Cartilage Repair

Composite Hydrogel Containing Collagen-Modified Polylactic Acid-Hydroxylactic Acid Copolymer Microspheres Loaded with Tetramethylpyrazine Promotes Articular Cartilage Repair

Articular cartilage defects pose a significant challenge due to the limited self-healing ability of cartilage. However, traditional techniques face limitations including autologous chondrocyte expansion issues. This study aims to investigate the effects of the polylactic acid-glycolic acid (PLGA) and collagen-surface modified polylactic acid-glycolic acid (CPLGA) microspheres loaded with tetramethylpyrazine (TMP) on two cell types and the regeneration potential of articular cartilage. CPLGA microspheres are prepared by Steglich reaction and characterized. They evaluated the effect of TMP-loaded microspheres on HUVECs (Human Umbilical Vein Endothelial Cells) and examined the compatibility of blank microspheres with BMSCs (Bone marrow mesenchymal stromal cells) and their potential to promote cartilage differentiation. Subcutaneous implant immune tests and cartilage defect treatment are conducted to assess biocompatibility and cartilage repair potential. The results highlight the efficacy of CPLGA microspheres in promoting tissue regeneration, attributed to improved hydrophilicity and collagen-induced mitigation of degradation. Under hypoxic conditions, both CPLGA and PLGA TMP-loaded microspheres exhibit inhibitory effects on HUVEC proliferation, migration, and angiogenesis. Notably, CPLGA microspheres show enhanced compatibility with BMSCs, facilitating chondrogenic differentiation. Moreover, the CPLGA microsphere-composite hydrogel exhibits potential for cartilage repair by modulating angiogenesis and promoting BMSC differentiation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular bioscience
Macromolecular bioscience 生物-材料科学:生物材料
CiteScore
7.90
自引率
2.20%
发文量
211
审稿时长
1.5 months
期刊介绍: Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals. Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers. With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信