Reza Abedi, Behnaz Memar Maher, Leila Amirkhani, Mostafa Rezaei, Sona Jamshidi
{"title":"热塑性聚氨酯膜的化学微观结构、结晶度、机械性能和 CO2/N2 气体截留率之间的关系","authors":"Reza Abedi, Behnaz Memar Maher, Leila Amirkhani, Mostafa Rezaei, Sona Jamshidi","doi":"10.1007/s00396-024-05249-8","DOIUrl":null,"url":null,"abstract":"<div><p>This research investigated the synthesis of thermoplastic polyurethane (TPU) with a hard segment content (HSC) of 30% weight. The chain extender, the polyols, and the diisocyanate utilized 1,4-butanediol (BDO), and the polycaprolactone diol (PCL-diol) with molecular weights of 2000, 4000, and 10,000 and isophorone diisocyanate (IPDI), respectively. Differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), hydrogen nuclear magnetic resonance (<sup>1</sup>H-NMR), and X-ray diffraction (XRD) were used to examine the chemical microstructure and physical properties of PCL diol and thermoplastic polyurethanes (TPUs). The molecular weight of the PCL diol as soft segments affected the crystallinity and glass transition temperature (<i>T</i><sub>g</sub>) of TPUs. An increase in PCL diol molecular weight resulted in a reduction in elongation at failure and an increase in ultimate tensile strength. This study was conducted to investigate the permeability and the permselectivity of CO<sub>2</sub> and N<sub>2</sub> gases over pressure ranges (3 to 9 atm). It was determined that the gas permeability of each sample increased in response to an increase in the pressure of the supplying gas. An elevation in the molecular weight of PCL-diols in TPU samples resulted in a reduction in selectivity and an increase in CO<sub>2</sub> and N<sub>2</sub> gas permeability. Although IPDI is a non-aromatic cyclic diisocyanate with a significant impact on thermoplastic polyurethane phase morphology, the goal of this paper is to create a change in the molecular weight of PCL-diol and investigate the effect of molecular weight on the resulting morphology as well.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 7","pages":"1081 - 1095"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The relationship between chemical microstructure, crystallinity, mechanical properties, and CO2/N2 gases permselectivity of thermoplastic polyurethane membranes\",\"authors\":\"Reza Abedi, Behnaz Memar Maher, Leila Amirkhani, Mostafa Rezaei, Sona Jamshidi\",\"doi\":\"10.1007/s00396-024-05249-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research investigated the synthesis of thermoplastic polyurethane (TPU) with a hard segment content (HSC) of 30% weight. The chain extender, the polyols, and the diisocyanate utilized 1,4-butanediol (BDO), and the polycaprolactone diol (PCL-diol) with molecular weights of 2000, 4000, and 10,000 and isophorone diisocyanate (IPDI), respectively. Differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), hydrogen nuclear magnetic resonance (<sup>1</sup>H-NMR), and X-ray diffraction (XRD) were used to examine the chemical microstructure and physical properties of PCL diol and thermoplastic polyurethanes (TPUs). The molecular weight of the PCL diol as soft segments affected the crystallinity and glass transition temperature (<i>T</i><sub>g</sub>) of TPUs. An increase in PCL diol molecular weight resulted in a reduction in elongation at failure and an increase in ultimate tensile strength. This study was conducted to investigate the permeability and the permselectivity of CO<sub>2</sub> and N<sub>2</sub> gases over pressure ranges (3 to 9 atm). It was determined that the gas permeability of each sample increased in response to an increase in the pressure of the supplying gas. An elevation in the molecular weight of PCL-diols in TPU samples resulted in a reduction in selectivity and an increase in CO<sub>2</sub> and N<sub>2</sub> gas permeability. Although IPDI is a non-aromatic cyclic diisocyanate with a significant impact on thermoplastic polyurethane phase morphology, the goal of this paper is to create a change in the molecular weight of PCL-diol and investigate the effect of molecular weight on the resulting morphology as well.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":520,\"journal\":{\"name\":\"Colloid and Polymer Science\",\"volume\":\"302 7\",\"pages\":\"1081 - 1095\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid and Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00396-024-05249-8\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-024-05249-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The relationship between chemical microstructure, crystallinity, mechanical properties, and CO2/N2 gases permselectivity of thermoplastic polyurethane membranes
This research investigated the synthesis of thermoplastic polyurethane (TPU) with a hard segment content (HSC) of 30% weight. The chain extender, the polyols, and the diisocyanate utilized 1,4-butanediol (BDO), and the polycaprolactone diol (PCL-diol) with molecular weights of 2000, 4000, and 10,000 and isophorone diisocyanate (IPDI), respectively. Differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), hydrogen nuclear magnetic resonance (1H-NMR), and X-ray diffraction (XRD) were used to examine the chemical microstructure and physical properties of PCL diol and thermoplastic polyurethanes (TPUs). The molecular weight of the PCL diol as soft segments affected the crystallinity and glass transition temperature (Tg) of TPUs. An increase in PCL diol molecular weight resulted in a reduction in elongation at failure and an increase in ultimate tensile strength. This study was conducted to investigate the permeability and the permselectivity of CO2 and N2 gases over pressure ranges (3 to 9 atm). It was determined that the gas permeability of each sample increased in response to an increase in the pressure of the supplying gas. An elevation in the molecular weight of PCL-diols in TPU samples resulted in a reduction in selectivity and an increase in CO2 and N2 gas permeability. Although IPDI is a non-aromatic cyclic diisocyanate with a significant impact on thermoplastic polyurethane phase morphology, the goal of this paper is to create a change in the molecular weight of PCL-diol and investigate the effect of molecular weight on the resulting morphology as well.
期刊介绍:
Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.