含有 MoS2 粒子的聚乳酸可逆双层致动器

IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Cristobal Nolasco, Loreto Flores, Humberto Palza
{"title":"含有 MoS2 粒子的聚乳酸可逆双层致动器","authors":"Cristobal Nolasco,&nbsp;Loreto Flores,&nbsp;Humberto Palza","doi":"10.1002/mame.202400006","DOIUrl":null,"url":null,"abstract":"<p>Polylactic acid (PLA) composites having 1 wt% of MoS<sub>2</sub> particles are prepared by solvent (SM) and melt mixing (MM) methods and their main thermal and mechanical properties are characterized. Coated films from SM samples and 3D-printed filaments from MM samples are tested as active layers in reversible bilayer actuators using a paper sheet as a passive layer. The thermal properties depend on the method used to prepare the composites with MM samples presenting a cold crystallization and a glass transition during the first and second heating and SM samples displaying a standard melt process during the first heating and a small cold crystallization and a glass transition during second heating. Regarding the stiffness, MoS<sub>2</sub> increases this property confirming its reinforcement effect. Both kinds of bilayers show reversible actuation under heating either by putting the actuator on a hot plate or by remotely irradiating the sample with near-infrared light (NIR). Under NIR, the 3D printed composites present a much higher actuation. The higher remote actuation in composited bilayers is explained by the NIR light absorption of the MoS<sub>2</sub> photoactive particles. This actuator can be used for the design of a smart façade or blind that closes under NIR stimulus.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 5","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400006","citationCount":"0","resultStr":"{\"title\":\"Polylactic-Acid Having MoS2 Particles for Reversible Bilayer Actuators\",\"authors\":\"Cristobal Nolasco,&nbsp;Loreto Flores,&nbsp;Humberto Palza\",\"doi\":\"10.1002/mame.202400006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Polylactic acid (PLA) composites having 1 wt% of MoS<sub>2</sub> particles are prepared by solvent (SM) and melt mixing (MM) methods and their main thermal and mechanical properties are characterized. Coated films from SM samples and 3D-printed filaments from MM samples are tested as active layers in reversible bilayer actuators using a paper sheet as a passive layer. The thermal properties depend on the method used to prepare the composites with MM samples presenting a cold crystallization and a glass transition during the first and second heating and SM samples displaying a standard melt process during the first heating and a small cold crystallization and a glass transition during second heating. Regarding the stiffness, MoS<sub>2</sub> increases this property confirming its reinforcement effect. Both kinds of bilayers show reversible actuation under heating either by putting the actuator on a hot plate or by remotely irradiating the sample with near-infrared light (NIR). Under NIR, the 3D printed composites present a much higher actuation. The higher remote actuation in composited bilayers is explained by the NIR light absorption of the MoS<sub>2</sub> photoactive particles. This actuator can be used for the design of a smart façade or blind that closes under NIR stimulus.</p>\",\"PeriodicalId\":18151,\"journal\":{\"name\":\"Macromolecular Materials and Engineering\",\"volume\":\"309 5\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400006\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Materials and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400006\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400006","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过溶剂(SM)和熔融混合(MM)方法制备了含有 1 wt% MoS2 颗粒的聚乳酸(PLA)复合材料,并对其主要热性能和机械性能进行了表征。由 SM 样品制备的涂层薄膜和由 MM 样品制备的三维打印细丝作为主动层在使用纸片作为被动层的可逆双层致动器中进行了测试。热性能取决于复合材料的制备方法,MM 样品在第一次和第二次加热过程中会出现冷结晶和玻璃化转变,而 SM 样品在第一次加热过程中会出现标准熔融过程,在第二次加热过程中会出现少量冷结晶和玻璃化转变。在刚度方面,MoS2 增加了这一特性,证实了其增强效果。通过将致动器放在热板上或用近红外线(NIR)远程照射样品,两种双层材料都能在加热条件下实现可逆致动。在近红外条件下,3D 打印复合材料的致动率要高得多。MoS2光活性颗粒对近红外光的吸收解释了复合双层材料中更高的远程驱动力。这种致动器可用于设计在近红外刺激下关闭的智能幕墙或百叶窗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Polylactic-Acid Having MoS2 Particles for Reversible Bilayer Actuators

Polylactic-Acid Having MoS2 Particles for Reversible Bilayer Actuators

Polylactic-Acid Having MoS2 Particles for Reversible Bilayer Actuators

Polylactic acid (PLA) composites having 1 wt% of MoS2 particles are prepared by solvent (SM) and melt mixing (MM) methods and their main thermal and mechanical properties are characterized. Coated films from SM samples and 3D-printed filaments from MM samples are tested as active layers in reversible bilayer actuators using a paper sheet as a passive layer. The thermal properties depend on the method used to prepare the composites with MM samples presenting a cold crystallization and a glass transition during the first and second heating and SM samples displaying a standard melt process during the first heating and a small cold crystallization and a glass transition during second heating. Regarding the stiffness, MoS2 increases this property confirming its reinforcement effect. Both kinds of bilayers show reversible actuation under heating either by putting the actuator on a hot plate or by remotely irradiating the sample with near-infrared light (NIR). Under NIR, the 3D printed composites present a much higher actuation. The higher remote actuation in composited bilayers is explained by the NIR light absorption of the MoS2 photoactive particles. This actuator can be used for the design of a smart façade or blind that closes under NIR stimulus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Materials and Engineering
Macromolecular Materials and Engineering 工程技术-材料科学:综合
CiteScore
7.30
自引率
5.10%
发文量
328
审稿时长
1.6 months
期刊介绍: Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications. Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science. The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments. ISSN: 1438-7492 (print). 1439-2054 (online). Readership:Polymer scientists, chemists, physicists, materials scientists, engineers Abstracting and Indexing Information: CAS: Chemical Abstracts Service (ACS) CCR Database (Clarivate Analytics) Chemical Abstracts Service/SciFinder (ACS) Chemistry Server Reaction Center (Clarivate Analytics) ChemWeb (ChemIndustry.com) Chimica Database (Elsevier) COMPENDEX (Elsevier) Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics) Directory of Open Access Journals (DOAJ) INSPEC (IET) Journal Citation Reports/Science Edition (Clarivate Analytics) Materials Science & Engineering Database (ProQuest) PASCAL Database (INIST/CNRS) Polymer Library (iSmithers RAPRA) Reaction Citation Index (Clarivate Analytics) Science Citation Index (Clarivate Analytics) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) SCOPUS (Elsevier) Technology Collection (ProQuest) Web of Science (Clarivate Analytics)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信