用于 X 波段应用的 LG = 0.15 μm 氮化镓高电子迁移率晶体管中寄生栅极电容和栅极电阻对射频性能的影响

IF 1.3 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Sung-Jae Chang, Hyeon-Seok Jeong, Hyun-Wook Jung, Su-Min Choi, Il-Gyu Choi, Youn-Sub Noh, Seong-Il Kim, Sang-Heung Lee, Ho-Kyun Ahn, Dong Min Kang, Dae-Hyun Kim, Jong-Won Lim
{"title":"用于 X 波段应用的 LG = 0.15 μm 氮化镓高电子迁移率晶体管中寄生栅极电容和栅极电阻对射频性能的影响","authors":"Sung-Jae Chang, Hyeon-Seok Jeong, Hyun-Wook Jung, Su-Min Choi, Il-Gyu Choi, Youn-Sub Noh, Seong-Il Kim, Sang-Heung Lee, Ho-Kyun Ahn, Dong Min Kang, Dae-Hyun Kim, Jong-Won Lim","doi":"10.4218/etrij.2023-0250","DOIUrl":null,"url":null,"abstract":"The effects of the parasitic gate capacitance and gate resistance (<i>R</i><sub>g</sub>) on the radiofrequency (RF) performance are investigated in <i>L</i><sub>G</sub> = 0.15 μm GaN high-electron-mobility transistors with T-gate head size ranging from 0.83 to 1.08 μm. When the device characteristics are compared, the difference in DC characteristics is negligible. The RF performance in terms of the current-gain cut-off frequency (<i>f</i><sub>T</sub>) and maximum oscillation frequency (<i>f</i><sub>max</sub>) substantially depend on the T-gate head size. For clarifying the T-gate head size dependence, small-signal modeling is conducted to extract the parasitic gate capacitance and <i>R</i><sub>g</sub>. When the T-gate head size is reduced from 1.08 to 0.83 μm, <i>R</i><sub>g</sub> increases by 82%, while <i>f</i><sub>T</sub> and <i>f</i><sub>max</sub> improve by 27% and 26%, respectively, because the parasitic gate–source and gate–drain capacitances reduce by 19% and 43%, respectively. Therefore, minimizing the parasitic gate capacitance is more effective that reducing <i>R</i><sub>g</sub> in our transistor design and fabrication, leading to improved RF performance when reducing the T-gate head size.","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"4 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of parasitic gate capacitance and gate resistance on radiofrequency performance in LG = 0.15 μm GaN high-electron-mobility transistors for X-band applications\",\"authors\":\"Sung-Jae Chang, Hyeon-Seok Jeong, Hyun-Wook Jung, Su-Min Choi, Il-Gyu Choi, Youn-Sub Noh, Seong-Il Kim, Sang-Heung Lee, Ho-Kyun Ahn, Dong Min Kang, Dae-Hyun Kim, Jong-Won Lim\",\"doi\":\"10.4218/etrij.2023-0250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effects of the parasitic gate capacitance and gate resistance (<i>R</i><sub>g</sub>) on the radiofrequency (RF) performance are investigated in <i>L</i><sub>G</sub> = 0.15 μm GaN high-electron-mobility transistors with T-gate head size ranging from 0.83 to 1.08 μm. When the device characteristics are compared, the difference in DC characteristics is negligible. The RF performance in terms of the current-gain cut-off frequency (<i>f</i><sub>T</sub>) and maximum oscillation frequency (<i>f</i><sub>max</sub>) substantially depend on the T-gate head size. For clarifying the T-gate head size dependence, small-signal modeling is conducted to extract the parasitic gate capacitance and <i>R</i><sub>g</sub>. When the T-gate head size is reduced from 1.08 to 0.83 μm, <i>R</i><sub>g</sub> increases by 82%, while <i>f</i><sub>T</sub> and <i>f</i><sub>max</sub> improve by 27% and 26%, respectively, because the parasitic gate–source and gate–drain capacitances reduce by 19% and 43%, respectively. Therefore, minimizing the parasitic gate capacitance is more effective that reducing <i>R</i><sub>g</sub> in our transistor design and fabrication, leading to improved RF performance when reducing the T-gate head size.\",\"PeriodicalId\":11901,\"journal\":{\"name\":\"ETRI Journal\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETRI Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4218/etrij.2023-0250\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRI Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4218/etrij.2023-0250","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

研究了 LG = 0.15 μm GaN 高电子迁移率晶体管中寄生栅极电容和栅极电阻 (Rg) 对射频 (RF) 性能的影响,该晶体管的 T 形栅极头尺寸为 0.83 至 1.08 μm。在比较器件特性时,直流特性的差异可以忽略不计。就电流增益截止频率(fT)和最大振荡频率(fmax)而言,射频性能在很大程度上取决于 T 形栅极头的尺寸。为明确 T 形栅极头尺寸的相关性,我们进行了小信号建模,以提取寄生栅极电容和 Rg。当 T 形栅极头尺寸从 1.08 μm 减小到 0.83 μm 时,Rg 增加了 82%,而 fT 和 fmax 则分别提高了 27% 和 26%,这是因为寄生栅极-源极电容和栅极-漏极电容分别降低了 19% 和 43%。因此,在我们的晶体管设计和制造过程中,尽量减小寄生栅电容比减小 Rg 更有效,从而在减小 T 形栅极头尺寸时提高射频性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of parasitic gate capacitance and gate resistance on radiofrequency performance in LG = 0.15 μm GaN high-electron-mobility transistors for X-band applications
The effects of the parasitic gate capacitance and gate resistance (Rg) on the radiofrequency (RF) performance are investigated in LG = 0.15 μm GaN high-electron-mobility transistors with T-gate head size ranging from 0.83 to 1.08 μm. When the device characteristics are compared, the difference in DC characteristics is negligible. The RF performance in terms of the current-gain cut-off frequency (fT) and maximum oscillation frequency (fmax) substantially depend on the T-gate head size. For clarifying the T-gate head size dependence, small-signal modeling is conducted to extract the parasitic gate capacitance and Rg. When the T-gate head size is reduced from 1.08 to 0.83 μm, Rg increases by 82%, while fT and fmax improve by 27% and 26%, respectively, because the parasitic gate–source and gate–drain capacitances reduce by 19% and 43%, respectively. Therefore, minimizing the parasitic gate capacitance is more effective that reducing Rg in our transistor design and fabrication, leading to improved RF performance when reducing the T-gate head size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ETRI Journal
ETRI Journal 工程技术-电信学
CiteScore
4.00
自引率
7.10%
发文量
98
审稿时长
6.9 months
期刊介绍: ETRI Journal is an international, peer-reviewed multidisciplinary journal published bimonthly in English. The main focus of the journal is to provide an open forum to exchange innovative ideas and technology in the fields of information, telecommunications, and electronics. Key topics of interest include high-performance computing, big data analytics, cloud computing, multimedia technology, communication networks and services, wireless communications and mobile computing, material and component technology, as well as security. With an international editorial committee and experts from around the world as reviewers, ETRI Journal publishes high-quality research papers on the latest and best developments from the global community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信