一种有效的关键词搜索共现多层图挖掘方法

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Janet Oluwasola Bolorunduro, Zhaonian Zou, Mohamed Jaward Bah
{"title":"一种有效的关键词搜索共现多层图挖掘方法","authors":"Janet Oluwasola Bolorunduro, Zhaonian Zou, Mohamed Jaward Bah","doi":"10.1007/s10994-024-06528-9","DOIUrl":null,"url":null,"abstract":"<p>A combination of tools and methods known as \"graph mining\" is used to evaluate real-world graphs, forecast the potential effects of a given graph’s structure and properties for various applications, and build models that can yield actual graphs that closely resemble the structure seen in real-world graphs of interest. However, some graph mining approaches possess scalability and dynamic graph challenges, limiting practical applications. In machine learning and data mining, among the unique methods is graph embedding, known as network representation learning where representative methods suggest encoding the complicated graph structures into embedding by utilizing specific pre-defined metrics. Co-occurrence graphs and keyword searches are the foundation of search engine optimizations for diverse real-world applications. Current work on keyword searches on graphs is based on pre-established information retrieval search criteria and does not provide semantic linkages. Recent works on co-occurrence and keyword search methods function effectively on graphs with only one layer instead of many layers. However, the graph neural network has been utilized in recent years as a branch of graph model due to its excellent performance. This paper proposes an Effective Keyword Search Co-occurrence Multi-Layer Graph mining method by employing two core approaches: Multi-layer Graph Embedding and Graph Neural Networks. We conducted extensive tests using benchmarks on real-world data sets. Considering the experimental findings, the proposed method enhanced with the regularization approach is substantially excellent, with a 10% increment in precision, recall, and f1-score.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"32 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An effective keyword search co-occurrence multi-layer graph mining approach\",\"authors\":\"Janet Oluwasola Bolorunduro, Zhaonian Zou, Mohamed Jaward Bah\",\"doi\":\"10.1007/s10994-024-06528-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A combination of tools and methods known as \\\"graph mining\\\" is used to evaluate real-world graphs, forecast the potential effects of a given graph’s structure and properties for various applications, and build models that can yield actual graphs that closely resemble the structure seen in real-world graphs of interest. However, some graph mining approaches possess scalability and dynamic graph challenges, limiting practical applications. In machine learning and data mining, among the unique methods is graph embedding, known as network representation learning where representative methods suggest encoding the complicated graph structures into embedding by utilizing specific pre-defined metrics. Co-occurrence graphs and keyword searches are the foundation of search engine optimizations for diverse real-world applications. Current work on keyword searches on graphs is based on pre-established information retrieval search criteria and does not provide semantic linkages. Recent works on co-occurrence and keyword search methods function effectively on graphs with only one layer instead of many layers. However, the graph neural network has been utilized in recent years as a branch of graph model due to its excellent performance. This paper proposes an Effective Keyword Search Co-occurrence Multi-Layer Graph mining method by employing two core approaches: Multi-layer Graph Embedding and Graph Neural Networks. We conducted extensive tests using benchmarks on real-world data sets. Considering the experimental findings, the proposed method enhanced with the regularization approach is substantially excellent, with a 10% increment in precision, recall, and f1-score.</p>\",\"PeriodicalId\":49900,\"journal\":{\"name\":\"Machine Learning\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10994-024-06528-9\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-024-06528-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

被称为 "图挖掘 "的工具和方法组合可用于评估现实世界中的图,预测给定图的结构和属性对各种应用的潜在影响,并建立模型,以生成与现实世界中相关图的结构非常相似的实际图。然而,一些图挖掘方法面临着可扩展性和动态图的挑战,限制了实际应用。在机器学习和数据挖掘领域,图嵌入是一种独特的方法,被称为网络表示学习,其中具有代表性的方法建议利用特定的预定义指标将复杂的图结构编码为嵌入。共现图和关键词搜索是搜索引擎优化的基础,适用于各种实际应用。目前在图上进行关键词搜索的工作是基于预先确定的信息检索搜索标准,并不提供语义链接。最近关于共现和关键词搜索方法的研究成果能在只有一层而非多层的图上有效发挥作用。然而,图神经网络作为图模型的一个分支,因其出色的性能近年来得到了广泛应用。本文通过采用两种核心方法,提出了一种有效的关键词搜索共现多层图挖掘方法:多层图嵌入和图神经网络。我们利用真实世界数据集上的基准进行了大量测试。从实验结果来看,使用正则化方法增强的拟议方法非常出色,精确度、召回率和 f1 分数均提高了 10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An effective keyword search co-occurrence multi-layer graph mining approach

A combination of tools and methods known as "graph mining" is used to evaluate real-world graphs, forecast the potential effects of a given graph’s structure and properties for various applications, and build models that can yield actual graphs that closely resemble the structure seen in real-world graphs of interest. However, some graph mining approaches possess scalability and dynamic graph challenges, limiting practical applications. In machine learning and data mining, among the unique methods is graph embedding, known as network representation learning where representative methods suggest encoding the complicated graph structures into embedding by utilizing specific pre-defined metrics. Co-occurrence graphs and keyword searches are the foundation of search engine optimizations for diverse real-world applications. Current work on keyword searches on graphs is based on pre-established information retrieval search criteria and does not provide semantic linkages. Recent works on co-occurrence and keyword search methods function effectively on graphs with only one layer instead of many layers. However, the graph neural network has been utilized in recent years as a branch of graph model due to its excellent performance. This paper proposes an Effective Keyword Search Co-occurrence Multi-Layer Graph mining method by employing two core approaches: Multi-layer Graph Embedding and Graph Neural Networks. We conducted extensive tests using benchmarks on real-world data sets. Considering the experimental findings, the proposed method enhanced with the regularization approach is substantially excellent, with a 10% increment in precision, recall, and f1-score.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Learning
Machine Learning 工程技术-计算机:人工智能
CiteScore
11.00
自引率
2.70%
发文量
162
审稿时长
3 months
期刊介绍: Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信