Shamraiz Hussain Talib, Beenish Bashir, Muhammad Ajmal Khan, Babar Ali, Sharmarke Mohamed, Ahsanulhaq Qurashi, Jun Li
{"title":"通过在石墨支持物上锚定单原子提高水分离和氧还原的效率","authors":"Shamraiz Hussain Talib, Beenish Bashir, Muhammad Ajmal Khan, Babar Ali, Sharmarke Mohamed, Ahsanulhaq Qurashi, Jun Li","doi":"10.1002/eem2.12723","DOIUrl":null,"url":null,"abstract":"<p>Single-atom catalysts (SACs) have received significant interest for optimizing metal atom utilization and superior catalytic performance in hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). In this study, we investigate a range of single-transition metal (STM<sub>1</sub> = Sc<sub>1</sub>, Ti<sub>1</sub>, V<sub>1</sub>, Cr<sub>1</sub>, Mn<sub>1</sub>, Fe<sub>1</sub>, Co<sub>1</sub>, Ni<sub>1</sub>, Cu<sub>1</sub>, Zr<sub>1</sub>, Nb<sub>1</sub>, Mo<sub>1</sub>, Ru<sub>1</sub>, Rh<sub>1</sub>, Pd<sub>1</sub>, Ag<sub>1</sub>, W<sub>1</sub>, Re<sub>1</sub>, Os<sub>1</sub>, Ir<sub>1</sub>, Pt<sub>1</sub>, and Au<sub>1</sub>) atoms supported on graphyne (GY) surface for HER/OER and ORR using first-principle calculations. Ab initio molecular dynamics (AIMD) simulations and phonon dispersion spectra reveal the dynamic and thermal stabilities of the GY surface. The exceptional stability of all supported STM<sub>1</sub> atoms within the H1 cavity of the GY surface exists in an isolated form, facilitating the uniform distribution and proper arrangement of single atoms on GY. In particular, Sc<sub>1</sub>, Co<sub>1</sub>, Fe<sub>1</sub>, and Au<sub>1</sub>/GY demonstrate promising catalytic efficiency in the HER due to idealistic ΔG<sub>H*</sub> values <i>via</i> the Volmer-Heyrovsky pathway. Notably, Sc<sub>1</sub> and Au<sub>1</sub>/GY exhibit superior HER catalytic activity compared to other studied catalysts. Co<sub>1</sub>/GY catalyst exhibits higher selectivity and activity for the OER, with an overpotential (0.46 V) comparable to MoC<sub>2</sub>, IrO<sub>2</sub>, and RuO<sub>2</sub>. Also, Rh<sub>1</sub> and Co<sub>1</sub>/GY SACs exhibited promising electrocatalysts for the ORR, with an overpotential of 0.36 and 0.46 V, respectively. Therefore, Co<sub>1</sub>/GY is a versatile electrocatalyst for metal-air batteries and water-splitting. This study further incorporates computational analysis of the kinetic potential energy barriers of Co<sub>1</sub> and Rh<sub>1</sub> in the OER and ORR. A strong correlation is found between the estimated kinetic activation barriers for the thermodynamic outcomes and all proton-coupled electron transfer steps. We establish a relation for the Gibbs free energy of intermediates to understand the mechanism of SACs supported on STM<sub>1</sub>/GY and introduce a key descriptor. This study highlights GY as a favorable single-atom support for designing highly active and cost-effective versatile electrocatalysts for practical applications.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 5","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12723","citationCount":"0","resultStr":"{\"title\":\"Improving the Efficiency of Water Splitting and Oxygen Reduction Via Single-Atom Anchoring on Graphyne Support\",\"authors\":\"Shamraiz Hussain Talib, Beenish Bashir, Muhammad Ajmal Khan, Babar Ali, Sharmarke Mohamed, Ahsanulhaq Qurashi, Jun Li\",\"doi\":\"10.1002/eem2.12723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Single-atom catalysts (SACs) have received significant interest for optimizing metal atom utilization and superior catalytic performance in hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). In this study, we investigate a range of single-transition metal (STM<sub>1</sub> = Sc<sub>1</sub>, Ti<sub>1</sub>, V<sub>1</sub>, Cr<sub>1</sub>, Mn<sub>1</sub>, Fe<sub>1</sub>, Co<sub>1</sub>, Ni<sub>1</sub>, Cu<sub>1</sub>, Zr<sub>1</sub>, Nb<sub>1</sub>, Mo<sub>1</sub>, Ru<sub>1</sub>, Rh<sub>1</sub>, Pd<sub>1</sub>, Ag<sub>1</sub>, W<sub>1</sub>, Re<sub>1</sub>, Os<sub>1</sub>, Ir<sub>1</sub>, Pt<sub>1</sub>, and Au<sub>1</sub>) atoms supported on graphyne (GY) surface for HER/OER and ORR using first-principle calculations. Ab initio molecular dynamics (AIMD) simulations and phonon dispersion spectra reveal the dynamic and thermal stabilities of the GY surface. The exceptional stability of all supported STM<sub>1</sub> atoms within the H1 cavity of the GY surface exists in an isolated form, facilitating the uniform distribution and proper arrangement of single atoms on GY. In particular, Sc<sub>1</sub>, Co<sub>1</sub>, Fe<sub>1</sub>, and Au<sub>1</sub>/GY demonstrate promising catalytic efficiency in the HER due to idealistic ΔG<sub>H*</sub> values <i>via</i> the Volmer-Heyrovsky pathway. Notably, Sc<sub>1</sub> and Au<sub>1</sub>/GY exhibit superior HER catalytic activity compared to other studied catalysts. Co<sub>1</sub>/GY catalyst exhibits higher selectivity and activity for the OER, with an overpotential (0.46 V) comparable to MoC<sub>2</sub>, IrO<sub>2</sub>, and RuO<sub>2</sub>. Also, Rh<sub>1</sub> and Co<sub>1</sub>/GY SACs exhibited promising electrocatalysts for the ORR, with an overpotential of 0.36 and 0.46 V, respectively. Therefore, Co<sub>1</sub>/GY is a versatile electrocatalyst for metal-air batteries and water-splitting. This study further incorporates computational analysis of the kinetic potential energy barriers of Co<sub>1</sub> and Rh<sub>1</sub> in the OER and ORR. A strong correlation is found between the estimated kinetic activation barriers for the thermodynamic outcomes and all proton-coupled electron transfer steps. We establish a relation for the Gibbs free energy of intermediates to understand the mechanism of SACs supported on STM<sub>1</sub>/GY and introduce a key descriptor. This study highlights GY as a favorable single-atom support for designing highly active and cost-effective versatile electrocatalysts for practical applications.</p>\",\"PeriodicalId\":11554,\"journal\":{\"name\":\"Energy & Environmental Materials\",\"volume\":\"7 5\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12723\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12723\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12723","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Improving the Efficiency of Water Splitting and Oxygen Reduction Via Single-Atom Anchoring on Graphyne Support
Single-atom catalysts (SACs) have received significant interest for optimizing metal atom utilization and superior catalytic performance in hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). In this study, we investigate a range of single-transition metal (STM1 = Sc1, Ti1, V1, Cr1, Mn1, Fe1, Co1, Ni1, Cu1, Zr1, Nb1, Mo1, Ru1, Rh1, Pd1, Ag1, W1, Re1, Os1, Ir1, Pt1, and Au1) atoms supported on graphyne (GY) surface for HER/OER and ORR using first-principle calculations. Ab initio molecular dynamics (AIMD) simulations and phonon dispersion spectra reveal the dynamic and thermal stabilities of the GY surface. The exceptional stability of all supported STM1 atoms within the H1 cavity of the GY surface exists in an isolated form, facilitating the uniform distribution and proper arrangement of single atoms on GY. In particular, Sc1, Co1, Fe1, and Au1/GY demonstrate promising catalytic efficiency in the HER due to idealistic ΔGH* values via the Volmer-Heyrovsky pathway. Notably, Sc1 and Au1/GY exhibit superior HER catalytic activity compared to other studied catalysts. Co1/GY catalyst exhibits higher selectivity and activity for the OER, with an overpotential (0.46 V) comparable to MoC2, IrO2, and RuO2. Also, Rh1 and Co1/GY SACs exhibited promising electrocatalysts for the ORR, with an overpotential of 0.36 and 0.46 V, respectively. Therefore, Co1/GY is a versatile electrocatalyst for metal-air batteries and water-splitting. This study further incorporates computational analysis of the kinetic potential energy barriers of Co1 and Rh1 in the OER and ORR. A strong correlation is found between the estimated kinetic activation barriers for the thermodynamic outcomes and all proton-coupled electron transfer steps. We establish a relation for the Gibbs free energy of intermediates to understand the mechanism of SACs supported on STM1/GY and introduce a key descriptor. This study highlights GY as a favorable single-atom support for designing highly active and cost-effective versatile electrocatalysts for practical applications.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.