使用随机网格进行深度校准

IF 1.5 4区 经济学 Q3 BUSINESS, FINANCE
Fabio Baschetti, Giacomo Bormetti, Pietro Rossi
{"title":"使用随机网格进行深度校准","authors":"Fabio Baschetti, Giacomo Bormetti, Pietro Rossi","doi":"10.1080/14697688.2024.2332375","DOIUrl":null,"url":null,"abstract":"We propose a neural network-based approach to calibrating stochastic volatility models, which combines the pioneering grid approach by Horvath et al. [Deep learning volatility: A deep neural networ...","PeriodicalId":20747,"journal":{"name":"Quantitative Finance","volume":"41 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep calibration with random grids\",\"authors\":\"Fabio Baschetti, Giacomo Bormetti, Pietro Rossi\",\"doi\":\"10.1080/14697688.2024.2332375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a neural network-based approach to calibrating stochastic volatility models, which combines the pioneering grid approach by Horvath et al. [Deep learning volatility: A deep neural networ...\",\"PeriodicalId\":20747,\"journal\":{\"name\":\"Quantitative Finance\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/14697688.2024.2332375\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Finance","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/14697688.2024.2332375","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于神经网络的随机波动率模型校准方法,该方法结合了 Horvath 等人的开创性网格方法[深度学习波动率:深度学习波动性:一种深度神经网络...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep calibration with random grids
We propose a neural network-based approach to calibrating stochastic volatility models, which combines the pioneering grid approach by Horvath et al. [Deep learning volatility: A deep neural networ...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantitative Finance
Quantitative Finance 社会科学-数学跨学科应用
CiteScore
3.20
自引率
7.70%
发文量
102
审稿时长
4-8 weeks
期刊介绍: The frontiers of finance are shifting rapidly, driven in part by the increasing use of quantitative methods in the field. Quantitative Finance welcomes original research articles that reflect the dynamism of this area. The journal provides an interdisciplinary forum for presenting both theoretical and empirical approaches and offers rapid publication of original new work with high standards of quality. The readership is broad, embracing researchers and practitioners across a range of specialisms and within a variety of organizations. All articles should aim to be of interest to this broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信