{"title":"国内外流行的猪流行性腹泻病毒毒株的遗传进化和系统发育分析,以中国广东省报告的野生型毒力基因型 CHYJ130330 为参照","authors":"Mudassar Mohiuddin, Shengchao Deng, Lisai Zhu, Guiping Wang, Aiqing Jia","doi":"10.1186/s13099-024-00597-w","DOIUrl":null,"url":null,"abstract":"During the last decade, porcine epidemic diarrhea virus has detrimental consequences on swine industry, due to severe outbreaks especially in the suckling piglets. In March 2013, an outbreak was reported on a commercial swine farm in Guangdong Province, Southern China. A wild-type PEDV strain named as CHYJ130330 was identified, complete genome was sequenced and deposited in GenBank (accession no. KJ020932). The molecular epidemiological including evolutionary characteristics and pathogenicity assessment were explored during this study with particular interest and focus to develop this candidate strain for new vaccine. The isolates from China pre- and post-2013 shared 96.5–97.2% and 97–99% nt identity respectively with wild-type CHYJ130330 strain which during experimental studies has demonstrated high virulence and 100% mortality in 104 TCID50 group piglets within 5 days. The 22 reference strains selected from other parts of the world shared 98–99% identity with our sequence except Chinese (CV777) and S. Korean (vir.DR13, SM98 and atten.DR13) strains sharing 96.8, 97.6, 96.6 and 97.1% identity respectively. The phylogenetic tree revealed most strains reported after 2013 in GII genogroup while the prototype (CV777), S.korean and earlier Chinese (JS2008, 85-7mutant, Atten.vaccine, SD-M, LZC and CH/S) were GI Group. The amino acid sequence of CHYJ130330 E and M protein is highly conserved while ORF3 and N protein having 9 and 17 amino acid substitutions respectively in comparison to CV777 strain. The comparison of full length genome and the structural proteins revealed variations signifying that PEDV variant strains are still the main source of outbreaks in spite of continuous vaccination and also explain the variable trend of large scale outbreaks during this decade as compared to sporadic tendency of disease found before 2010. It is evident from this study that Chinese strains display significant level of mixing with the strains reported from other countries. The strain CHYJ130330 was also adapted successfully to Vero cell line and has shown high virulence in piglets. The information/findings will be helpful to develop a strategy for control of PEDV and have also shown that CHYJ130330 strain has strong virulence and is a more popular clinical strain in recent years, which has the potential to be developed into PEDV vaccine.","PeriodicalId":12833,"journal":{"name":"Gut Pathogens","volume":"7 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic evolution and phylogenetic analysis of porcine epidemic diarrhea virus strains circulating in and outside China with reference to a wild type virulent genotype CHYJ130330 reported from Guangdong Province, China\",\"authors\":\"Mudassar Mohiuddin, Shengchao Deng, Lisai Zhu, Guiping Wang, Aiqing Jia\",\"doi\":\"10.1186/s13099-024-00597-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the last decade, porcine epidemic diarrhea virus has detrimental consequences on swine industry, due to severe outbreaks especially in the suckling piglets. In March 2013, an outbreak was reported on a commercial swine farm in Guangdong Province, Southern China. A wild-type PEDV strain named as CHYJ130330 was identified, complete genome was sequenced and deposited in GenBank (accession no. KJ020932). The molecular epidemiological including evolutionary characteristics and pathogenicity assessment were explored during this study with particular interest and focus to develop this candidate strain for new vaccine. The isolates from China pre- and post-2013 shared 96.5–97.2% and 97–99% nt identity respectively with wild-type CHYJ130330 strain which during experimental studies has demonstrated high virulence and 100% mortality in 104 TCID50 group piglets within 5 days. The 22 reference strains selected from other parts of the world shared 98–99% identity with our sequence except Chinese (CV777) and S. Korean (vir.DR13, SM98 and atten.DR13) strains sharing 96.8, 97.6, 96.6 and 97.1% identity respectively. The phylogenetic tree revealed most strains reported after 2013 in GII genogroup while the prototype (CV777), S.korean and earlier Chinese (JS2008, 85-7mutant, Atten.vaccine, SD-M, LZC and CH/S) were GI Group. The amino acid sequence of CHYJ130330 E and M protein is highly conserved while ORF3 and N protein having 9 and 17 amino acid substitutions respectively in comparison to CV777 strain. The comparison of full length genome and the structural proteins revealed variations signifying that PEDV variant strains are still the main source of outbreaks in spite of continuous vaccination and also explain the variable trend of large scale outbreaks during this decade as compared to sporadic tendency of disease found before 2010. It is evident from this study that Chinese strains display significant level of mixing with the strains reported from other countries. The strain CHYJ130330 was also adapted successfully to Vero cell line and has shown high virulence in piglets. The information/findings will be helpful to develop a strategy for control of PEDV and have also shown that CHYJ130330 strain has strong virulence and is a more popular clinical strain in recent years, which has the potential to be developed into PEDV vaccine.\",\"PeriodicalId\":12833,\"journal\":{\"name\":\"Gut Pathogens\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gut Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13099-024-00597-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13099-024-00597-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Genetic evolution and phylogenetic analysis of porcine epidemic diarrhea virus strains circulating in and outside China with reference to a wild type virulent genotype CHYJ130330 reported from Guangdong Province, China
During the last decade, porcine epidemic diarrhea virus has detrimental consequences on swine industry, due to severe outbreaks especially in the suckling piglets. In March 2013, an outbreak was reported on a commercial swine farm in Guangdong Province, Southern China. A wild-type PEDV strain named as CHYJ130330 was identified, complete genome was sequenced and deposited in GenBank (accession no. KJ020932). The molecular epidemiological including evolutionary characteristics and pathogenicity assessment were explored during this study with particular interest and focus to develop this candidate strain for new vaccine. The isolates from China pre- and post-2013 shared 96.5–97.2% and 97–99% nt identity respectively with wild-type CHYJ130330 strain which during experimental studies has demonstrated high virulence and 100% mortality in 104 TCID50 group piglets within 5 days. The 22 reference strains selected from other parts of the world shared 98–99% identity with our sequence except Chinese (CV777) and S. Korean (vir.DR13, SM98 and atten.DR13) strains sharing 96.8, 97.6, 96.6 and 97.1% identity respectively. The phylogenetic tree revealed most strains reported after 2013 in GII genogroup while the prototype (CV777), S.korean and earlier Chinese (JS2008, 85-7mutant, Atten.vaccine, SD-M, LZC and CH/S) were GI Group. The amino acid sequence of CHYJ130330 E and M protein is highly conserved while ORF3 and N protein having 9 and 17 amino acid substitutions respectively in comparison to CV777 strain. The comparison of full length genome and the structural proteins revealed variations signifying that PEDV variant strains are still the main source of outbreaks in spite of continuous vaccination and also explain the variable trend of large scale outbreaks during this decade as compared to sporadic tendency of disease found before 2010. It is evident from this study that Chinese strains display significant level of mixing with the strains reported from other countries. The strain CHYJ130330 was also adapted successfully to Vero cell line and has shown high virulence in piglets. The information/findings will be helpful to develop a strategy for control of PEDV and have also shown that CHYJ130330 strain has strong virulence and is a more popular clinical strain in recent years, which has the potential to be developed into PEDV vaccine.
Gut PathogensGASTROENTEROLOGY & HEPATOLOGY-MICROBIOLOGY
CiteScore
7.70
自引率
2.40%
发文量
43
期刊介绍:
Gut Pathogens is a fast publishing, inclusive and prominent international journal which recognizes the need for a publishing platform uniquely tailored to reflect the full breadth of research in the biology and medicine of pathogens, commensals and functional microbiota of the gut. The journal publishes basic, clinical and cutting-edge research on all aspects of the above mentioned organisms including probiotic bacteria and yeasts and their products. The scope also covers the related ecology, molecular genetics, physiology and epidemiology of these microbes. The journal actively invites timely reports on the novel aspects of genomics, metagenomics, microbiota profiling and systems biology.
Gut Pathogens will also consider, at the discretion of the editors, descriptive studies identifying a new genome sequence of a gut microbe or a series of related microbes (such as those obtained from new hosts, niches, settings, outbreaks and epidemics) and those obtained from single or multiple hosts at one or different time points (chronological evolution).