人工冷却挤压对 Mg-Zn-Y 合金微观结构和力学性能的影响

IF 2.9 2区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Qi-Yu Liao, Da-Zhi Zhao, Qi-Chi Le, Wen-Xin Hu, Yan-Chao Jiang, Wei-Yang Zhou, Liang Ren, Dan-Dan Li, Zhao-Yang Yin
{"title":"人工冷却挤压对 Mg-Zn-Y 合金微观结构和力学性能的影响","authors":"Qi-Yu Liao,&nbsp;Da-Zhi Zhao,&nbsp;Qi-Chi Le,&nbsp;Wen-Xin Hu,&nbsp;Yan-Chao Jiang,&nbsp;Wei-Yang Zhou,&nbsp;Liang Ren,&nbsp;Dan-Dan Li,&nbsp;Zhao-Yang Yin","doi":"10.1007/s40195-024-01681-5","DOIUrl":null,"url":null,"abstract":"<div><p>Microstructure and mechanical properties of Mg–Zn–Y alloys with different Zn/Y atomic ratios with or without artificial cooling (AC) extrusion were systematically investigated in this work. The results show that bimodal microstructure consisting of submicron dynamic recrystallized (DRXed) grains with high fraction of low-angle grain boundaries (LAGBs) and elongated unDRXed grains was formed in Mg<sub>98.7</sub>Zn<sub>1</sub>Y<sub>0.3</sub> alloy with AC extrusion. The AC process effectively limits the growth of precipitated phases, and large amount of nanoscale precipitates were dynamically precipitated during the extrusion process. AC extrusion could effectually refine the lamellar 14H LPSO phases and inhibit the transition from stacking faults to LSPO phases in Mg<sub>98</sub>Zn<sub>1</sub>Y<sub>1</sub> alloy and the narrow LPSO phase in Mg<sub>98</sub>Zn<sub>1</sub>Y<sub>1</sub>-AC alloy which could promote the nucleation of DRXed grains. The AC extrusion significantly improves the strength of Mg–Zn–Y alloys. Owing to AC extrusion, the strength improvement of Mg<sub>98.7</sub>Zn<sub>1</sub>Y<sub>0.3</sub> alloy is mainly attributed to fine grain strengthening, dislocation strengthening, and nano-phases precipitation strengthening. After AC process, more fine grains and nano-phases jointly strengthen the Mg<sub>98</sub>Zn<sub>1</sub>Y<sub>1</sub> alloy. The Mg<sub>98</sub>Zn<sub>1</sub>Y<sub>1</sub> alloy obtains optimal mechanical properties after extrusion at 623 K, with ultimate tensile strength (UTS) of 406 MPa, yield strength (YS) of 388 MPa, and elongation (EL) of 5.6%.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Artificial Cooling Extrusion on Microstructure and Mechanical Properties of Mg–Zn–Y Alloys\",\"authors\":\"Qi-Yu Liao,&nbsp;Da-Zhi Zhao,&nbsp;Qi-Chi Le,&nbsp;Wen-Xin Hu,&nbsp;Yan-Chao Jiang,&nbsp;Wei-Yang Zhou,&nbsp;Liang Ren,&nbsp;Dan-Dan Li,&nbsp;Zhao-Yang Yin\",\"doi\":\"10.1007/s40195-024-01681-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microstructure and mechanical properties of Mg–Zn–Y alloys with different Zn/Y atomic ratios with or without artificial cooling (AC) extrusion were systematically investigated in this work. The results show that bimodal microstructure consisting of submicron dynamic recrystallized (DRXed) grains with high fraction of low-angle grain boundaries (LAGBs) and elongated unDRXed grains was formed in Mg<sub>98.7</sub>Zn<sub>1</sub>Y<sub>0.3</sub> alloy with AC extrusion. The AC process effectively limits the growth of precipitated phases, and large amount of nanoscale precipitates were dynamically precipitated during the extrusion process. AC extrusion could effectually refine the lamellar 14H LPSO phases and inhibit the transition from stacking faults to LSPO phases in Mg<sub>98</sub>Zn<sub>1</sub>Y<sub>1</sub> alloy and the narrow LPSO phase in Mg<sub>98</sub>Zn<sub>1</sub>Y<sub>1</sub>-AC alloy which could promote the nucleation of DRXed grains. The AC extrusion significantly improves the strength of Mg–Zn–Y alloys. Owing to AC extrusion, the strength improvement of Mg<sub>98.7</sub>Zn<sub>1</sub>Y<sub>0.3</sub> alloy is mainly attributed to fine grain strengthening, dislocation strengthening, and nano-phases precipitation strengthening. After AC process, more fine grains and nano-phases jointly strengthen the Mg<sub>98</sub>Zn<sub>1</sub>Y<sub>1</sub> alloy. The Mg<sub>98</sub>Zn<sub>1</sub>Y<sub>1</sub> alloy obtains optimal mechanical properties after extrusion at 623 K, with ultimate tensile strength (UTS) of 406 MPa, yield strength (YS) of 388 MPa, and elongation (EL) of 5.6%.</p></div>\",\"PeriodicalId\":457,\"journal\":{\"name\":\"Acta Metallurgica Sinica-English Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Metallurgica Sinica-English Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40195-024-01681-5\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-024-01681-5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本研究系统地研究了不同 Zn/Y 原子比的 Mg-Zn-Y 合金在人工冷却(AC)挤压或非人工冷却(AC)挤压条件下的微观结构和力学性能。结果表明,在 AC 挤压下,Mg98.7Zn1Y0.3 合金形成了双峰微观结构,包括具有高比例低角度晶界(LAGB)的亚微米动态再结晶(DRXed)晶粒和细长的非 DRXed 晶粒。交流挤压工艺有效地限制了析出相的生长,大量纳米级析出物在挤压过程中动态析出。交流挤压可有效细化片状 14H LPSO 相,抑制 Mg98Zn1Y1 合金中堆叠断层向 LSPO 相的转变,并抑制 Mg98Zn1Y1-AC 合金中促进 DRX 化晶粒成核的狭长 LPSO 相。交流挤压大大提高了 Mg-Zn-Y 合金的强度。通过交流挤压,Mg98.7Zn1Y0.3 合金强度的提高主要归因于细晶粒强化、位错强化和纳米相沉淀强化。交流挤压加工后,更多的细晶粒和纳米相共同强化了 Mg98Zn1Y1 合金。Mg98Zn1Y1 合金在 623 K 挤压后获得了最佳机械性能,极限拉伸强度(UTS)为 406 MPa,屈服强度(YS)为 388 MPa,伸长率(EL)为 5.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of Artificial Cooling Extrusion on Microstructure and Mechanical Properties of Mg–Zn–Y Alloys

Effect of Artificial Cooling Extrusion on Microstructure and Mechanical Properties of Mg–Zn–Y Alloys

Microstructure and mechanical properties of Mg–Zn–Y alloys with different Zn/Y atomic ratios with or without artificial cooling (AC) extrusion were systematically investigated in this work. The results show that bimodal microstructure consisting of submicron dynamic recrystallized (DRXed) grains with high fraction of low-angle grain boundaries (LAGBs) and elongated unDRXed grains was formed in Mg98.7Zn1Y0.3 alloy with AC extrusion. The AC process effectively limits the growth of precipitated phases, and large amount of nanoscale precipitates were dynamically precipitated during the extrusion process. AC extrusion could effectually refine the lamellar 14H LPSO phases and inhibit the transition from stacking faults to LSPO phases in Mg98Zn1Y1 alloy and the narrow LPSO phase in Mg98Zn1Y1-AC alloy which could promote the nucleation of DRXed grains. The AC extrusion significantly improves the strength of Mg–Zn–Y alloys. Owing to AC extrusion, the strength improvement of Mg98.7Zn1Y0.3 alloy is mainly attributed to fine grain strengthening, dislocation strengthening, and nano-phases precipitation strengthening. After AC process, more fine grains and nano-phases jointly strengthen the Mg98Zn1Y1 alloy. The Mg98Zn1Y1 alloy obtains optimal mechanical properties after extrusion at 623 K, with ultimate tensile strength (UTS) of 406 MPa, yield strength (YS) of 388 MPa, and elongation (EL) of 5.6%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Metallurgica Sinica-English Letters
Acta Metallurgica Sinica-English Letters METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
6.60
自引率
14.30%
发文量
122
审稿时长
2 months
期刊介绍: This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信