{"title":"利用 TBM 工作参数进行硬岩隧道高效岩性预测的混合 RF 模型比较分析","authors":"Jian Zhou, Peixi Yang, Weixun Yong, Manoj Khandelwal, Shuai Huang","doi":"10.1007/s11600-024-01320-8","DOIUrl":null,"url":null,"abstract":"<div><p>With the escalating demand for underground mining and infrastructure construction, the optimization of tunnel construction has emerged as a primary concern for researchers. The geological conditions encountered during the excavation of hard rock tunnels using tunnel boring machines (TBM) significantly impact construction efficiency and cost-effectiveness. The existing lithology testing methods need to be more efficient in aligning with TBM operational efficiency. In recent years, the rapid advancement of artificial intelligence has paved the way for its integration into numerous domains, including tunnel engineering. To address this issue, this study proposes three innovative hybrid RF-based intelligent models, namely PSO-RF, ALO-RF, and GWO-RF, for the precise prediction of lithology in hard rock tunnels using TBM working parameters. The TBM operating parameters of the Jilin Yinsong Water Supply Project serve as the basis for this investigation. Twelve distinct characteristic parameters relevant to the lithology of the tunnel working face were carefully selected as input parameters for lithology prediction. Comparative analysis of the three hybrid models reveals that GWO-RF demonstrates exceptional lithology prediction performance (ACC = 0.999924; PRE<sub>A</sub> = 0.0.9999976; REC<sub>A</sub> = 0.999775; F1<sub>A</sub> = 0.999876; Kappa = 0.999911), whereas PSO-RF and ALO-RF exhibit slightly inferior performance. Nonetheless, all three hybrid models exhibit a significant improvement in prediction accuracy compared to the unoptimized RF model. The research findings presented herein facilitate the swift determination of TBM working surface lithology, enabling timely adjustment of TBM working parameters, reducing equipment wear and tear, and enhancing construction efficiency.</p></div>","PeriodicalId":6988,"journal":{"name":"Acta Geophysica","volume":"72 3","pages":"1847 - 1866"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative analysis of hybrid RF models for efficient lithology prediction in hard rock tunneling using TBM working parameters\",\"authors\":\"Jian Zhou, Peixi Yang, Weixun Yong, Manoj Khandelwal, Shuai Huang\",\"doi\":\"10.1007/s11600-024-01320-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the escalating demand for underground mining and infrastructure construction, the optimization of tunnel construction has emerged as a primary concern for researchers. The geological conditions encountered during the excavation of hard rock tunnels using tunnel boring machines (TBM) significantly impact construction efficiency and cost-effectiveness. The existing lithology testing methods need to be more efficient in aligning with TBM operational efficiency. In recent years, the rapid advancement of artificial intelligence has paved the way for its integration into numerous domains, including tunnel engineering. To address this issue, this study proposes three innovative hybrid RF-based intelligent models, namely PSO-RF, ALO-RF, and GWO-RF, for the precise prediction of lithology in hard rock tunnels using TBM working parameters. The TBM operating parameters of the Jilin Yinsong Water Supply Project serve as the basis for this investigation. Twelve distinct characteristic parameters relevant to the lithology of the tunnel working face were carefully selected as input parameters for lithology prediction. Comparative analysis of the three hybrid models reveals that GWO-RF demonstrates exceptional lithology prediction performance (ACC = 0.999924; PRE<sub>A</sub> = 0.0.9999976; REC<sub>A</sub> = 0.999775; F1<sub>A</sub> = 0.999876; Kappa = 0.999911), whereas PSO-RF and ALO-RF exhibit slightly inferior performance. Nonetheless, all three hybrid models exhibit a significant improvement in prediction accuracy compared to the unoptimized RF model. The research findings presented herein facilitate the swift determination of TBM working surface lithology, enabling timely adjustment of TBM working parameters, reducing equipment wear and tear, and enhancing construction efficiency.</p></div>\",\"PeriodicalId\":6988,\"journal\":{\"name\":\"Acta Geophysica\",\"volume\":\"72 3\",\"pages\":\"1847 - 1866\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geophysica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11600-024-01320-8\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geophysica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11600-024-01320-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A comparative analysis of hybrid RF models for efficient lithology prediction in hard rock tunneling using TBM working parameters
With the escalating demand for underground mining and infrastructure construction, the optimization of tunnel construction has emerged as a primary concern for researchers. The geological conditions encountered during the excavation of hard rock tunnels using tunnel boring machines (TBM) significantly impact construction efficiency and cost-effectiveness. The existing lithology testing methods need to be more efficient in aligning with TBM operational efficiency. In recent years, the rapid advancement of artificial intelligence has paved the way for its integration into numerous domains, including tunnel engineering. To address this issue, this study proposes three innovative hybrid RF-based intelligent models, namely PSO-RF, ALO-RF, and GWO-RF, for the precise prediction of lithology in hard rock tunnels using TBM working parameters. The TBM operating parameters of the Jilin Yinsong Water Supply Project serve as the basis for this investigation. Twelve distinct characteristic parameters relevant to the lithology of the tunnel working face were carefully selected as input parameters for lithology prediction. Comparative analysis of the three hybrid models reveals that GWO-RF demonstrates exceptional lithology prediction performance (ACC = 0.999924; PREA = 0.0.9999976; RECA = 0.999775; F1A = 0.999876; Kappa = 0.999911), whereas PSO-RF and ALO-RF exhibit slightly inferior performance. Nonetheless, all three hybrid models exhibit a significant improvement in prediction accuracy compared to the unoptimized RF model. The research findings presented herein facilitate the swift determination of TBM working surface lithology, enabling timely adjustment of TBM working parameters, reducing equipment wear and tear, and enhancing construction efficiency.
期刊介绍:
Acta Geophysica is open to all kinds of manuscripts including research and review articles, short communications, comments to published papers, letters to the Editor as well as book reviews. Some of the issues are fully devoted to particular topics; we do encourage proposals for such topical issues. We accept submissions from scientists world-wide, offering high scientific and editorial standard and comprehensive treatment of the discussed topics.