指数泰勒多项式定义的数域的判别和积分基础

Pub Date : 2024-04-08 DOI:10.1017/s0013091524000105
Ankita Jindal, Sudesh K. Khanduja
{"title":"指数泰勒多项式定义的数域的判别和积分基础","authors":"Ankita Jindal, Sudesh K. Khanduja","doi":"10.1017/s0013091524000105","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000105_inline1.png\" /> <jats:tex-math>$K_n=\\mathbb{Q}(\\alpha_n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a family of algebraic number fields where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000105_inline2.png\" /> <jats:tex-math>$\\alpha_n\\in \\mathbb{C}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a root of the <jats:italic>n</jats:italic>th exponential Taylor polynomial <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000105_inline3.png\" /> <jats:tex-math>$\\frac{x^n}{n!}+ \\frac{x^{n-1}}{(n-1)!}+ \\cdots +\\frac{x^2}{2!}+\\frac{x}{1!}+1$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000105_inline4.png\" /> <jats:tex-math>$n\\in \\mathbb{N}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this paper, we give a formula for the exact power of any prime <jats:italic>p</jats:italic> dividing the discriminant of <jats:italic>K<jats:sub>n</jats:sub></jats:italic> in terms of the <jats:italic>p</jats:italic>-adic expansion of <jats:italic>n</jats:italic>. An explicit <jats:italic>p</jats:italic>-integral basis of <jats:italic>K<jats:sub>n</jats:sub></jats:italic> is also given for each prime <jats:italic>p</jats:italic>. These <jats:italic>p</jats:italic>-integral bases quickly lead to the construction of an integral basis of <jats:italic>K<jats:sub>n</jats:sub></jats:italic>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discriminant and integral basis of number fields defined by exponential Taylor polynomials\",\"authors\":\"Ankita Jindal, Sudesh K. Khanduja\",\"doi\":\"10.1017/s0013091524000105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000105_inline1.png\\\" /> <jats:tex-math>$K_n=\\\\mathbb{Q}(\\\\alpha_n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a family of algebraic number fields where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000105_inline2.png\\\" /> <jats:tex-math>$\\\\alpha_n\\\\in \\\\mathbb{C}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a root of the <jats:italic>n</jats:italic>th exponential Taylor polynomial <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000105_inline3.png\\\" /> <jats:tex-math>$\\\\frac{x^n}{n!}+ \\\\frac{x^{n-1}}{(n-1)!}+ \\\\cdots +\\\\frac{x^2}{2!}+\\\\frac{x}{1!}+1$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S0013091524000105_inline4.png\\\" /> <jats:tex-math>$n\\\\in \\\\mathbb{N}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this paper, we give a formula for the exact power of any prime <jats:italic>p</jats:italic> dividing the discriminant of <jats:italic>K<jats:sub>n</jats:sub></jats:italic> in terms of the <jats:italic>p</jats:italic>-adic expansion of <jats:italic>n</jats:italic>. An explicit <jats:italic>p</jats:italic>-integral basis of <jats:italic>K<jats:sub>n</jats:sub></jats:italic> is also given for each prime <jats:italic>p</jats:italic>. These <jats:italic>p</jats:italic>-integral bases quickly lead to the construction of an integral basis of <jats:italic>K<jats:sub>n</jats:sub></jats:italic>.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0013091524000105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091524000105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $K_n=\mathbb{Q}(\alpha_n)$ 是一个代数数域族,其中 $\alpha_n\in \mathbb{C}$ 是第 n 次指数泰勒多项式 $\frac{x^n}{n!}+ (frac{x^{n-1}}{(n-1)!}+ (cdots +\frac{x^2}{2!}+\frac{x}{1!}+1$ , $n\in \mathbb{N}$。在本文中,我们用 n 的 p-adic 扩展给出了除以 Kn 的判别式的任何素数 p 的精确幂的公式。这些 p 积分基很快就能导致 Kn 积分基的构建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Discriminant and integral basis of number fields defined by exponential Taylor polynomials
Let $K_n=\mathbb{Q}(\alpha_n)$ be a family of algebraic number fields where $\alpha_n\in \mathbb{C}$ is a root of the nth exponential Taylor polynomial $\frac{x^n}{n!}+ \frac{x^{n-1}}{(n-1)!}+ \cdots +\frac{x^2}{2!}+\frac{x}{1!}+1$ , $n\in \mathbb{N}$ . In this paper, we give a formula for the exact power of any prime p dividing the discriminant of Kn in terms of the p-adic expansion of n. An explicit p-integral basis of Kn is also given for each prime p. These p-integral bases quickly lead to the construction of an integral basis of Kn.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信