具有组合非线性的准线性薛定谔方程的归一化解

Pub Date : 2024-04-12 DOI:10.1017/s001309152400004x
Anmin Mao, Shuyao Lu
{"title":"具有组合非线性的准线性薛定谔方程的归一化解","authors":"Anmin Mao, Shuyao Lu","doi":"10.1017/s001309152400004x","DOIUrl":null,"url":null,"abstract":"We consider the radially symmetric positive solutions to quasilinear problem <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400004X_eqnU1.png\" /> <jats:tex-math>\\begin{equation*}-\\triangle u-u\\triangle u^{2}+\\lambda u=f(u),\\quad{\\rm in} \\ \\mathbb{R}^{N},\\end{equation*}</jats:tex-math> </jats:alternatives> </jats:disp-formula> having prescribed mass <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400004X_inline1.png\" /> <jats:tex-math>$\\int_{\\mathbb{R}^{N}}|u|^2 =a^2,$</jats:tex-math> </jats:alternatives> </jats:inline-formula> where <jats:italic>a</jats:italic> &gt; 0 is a constant, <jats:italic>λ</jats:italic> appears as a Lagrange multiplier. We focus on the pure <jats:italic>L</jats:italic><jats:sup>2</jats:sup>-supercritical case and combination case of <jats:italic>L</jats:italic><jats:sup>2</jats:sup>-subcritical and <jats:italic>L</jats:italic><jats:sup>2</jats:sup>-supercritical nonlinearities <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400004X_eqnU2.png\" /> <jats:tex-math>\\begin{equation*}f(u)=\\tau |u|^{q-2}u+|u|^{p-2}u,\\quad \\tau \\gt 0,\\qquad{\\rm where}\\ \\ 2 \\lt q \\lt 2+\\frac{4}{N} \\ {\\rm and} \\quad \\ p \\gt \\bar{p},\\end{equation*}</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400004X_inline2.png\" /> <jats:tex-math>$\\bar{p}:=4+\\frac{4}{N}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:italic>L</jats:italic><jats:sup>2</jats:sup>-critical exponent. Our work extends and develops some recent results in the literature.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normalized solutions to the quasilinear Schrödinger equations with combined nonlinearities\",\"authors\":\"Anmin Mao, Shuyao Lu\",\"doi\":\"10.1017/s001309152400004x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the radially symmetric positive solutions to quasilinear problem <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S001309152400004X_eqnU1.png\\\" /> <jats:tex-math>\\\\begin{equation*}-\\\\triangle u-u\\\\triangle u^{2}+\\\\lambda u=f(u),\\\\quad{\\\\rm in} \\\\ \\\\mathbb{R}^{N},\\\\end{equation*}</jats:tex-math> </jats:alternatives> </jats:disp-formula> having prescribed mass <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S001309152400004X_inline1.png\\\" /> <jats:tex-math>$\\\\int_{\\\\mathbb{R}^{N}}|u|^2 =a^2,$</jats:tex-math> </jats:alternatives> </jats:inline-formula> where <jats:italic>a</jats:italic> &gt; 0 is a constant, <jats:italic>λ</jats:italic> appears as a Lagrange multiplier. We focus on the pure <jats:italic>L</jats:italic><jats:sup>2</jats:sup>-supercritical case and combination case of <jats:italic>L</jats:italic><jats:sup>2</jats:sup>-subcritical and <jats:italic>L</jats:italic><jats:sup>2</jats:sup>-supercritical nonlinearities <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S001309152400004X_eqnU2.png\\\" /> <jats:tex-math>\\\\begin{equation*}f(u)=\\\\tau |u|^{q-2}u+|u|^{p-2}u,\\\\quad \\\\tau \\\\gt 0,\\\\qquad{\\\\rm where}\\\\ \\\\ 2 \\\\lt q \\\\lt 2+\\\\frac{4}{N} \\\\ {\\\\rm and} \\\\quad \\\\ p \\\\gt \\\\bar{p},\\\\end{equation*}</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S001309152400004X_inline2.png\\\" /> <jats:tex-math>$\\\\bar{p}:=4+\\\\frac{4}{N}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:italic>L</jats:italic><jats:sup>2</jats:sup>-critical exponent. Our work extends and develops some recent results in the literature.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s001309152400004x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s001309152400004x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑准线性问题的径向对称正解。\mathbb{R}^{N},end{equation*} 具有规定质量 $\int_{\mathbb{R}^{N}}|u|^2 =a^2,$ 其中 a > 0 是常数,λ 作为拉格朗日乘数出现。我们重点讨论纯 L2 超临界情况以及 L2 超临界和 L2 超临界非线性的组合情况 (begin{equation*}f(u)=\tau |u|^{q-2}u+|u|^{p-2}u,\quad \tau \gt 0,\qquad{rm where} \ 2 \lt q \lt 2+\frac{4}{N}\ 和\quad \ p \gt \bar{p},\end{equation*} 其中 $\bar{p}:=4+\frac{4}{N}$ 是 L2 临界指数。我们的工作扩展并发展了文献中的一些最新成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Normalized solutions to the quasilinear Schrödinger equations with combined nonlinearities
We consider the radially symmetric positive solutions to quasilinear problem \begin{equation*}-\triangle u-u\triangle u^{2}+\lambda u=f(u),\quad{\rm in} \ \mathbb{R}^{N},\end{equation*} having prescribed mass $\int_{\mathbb{R}^{N}}|u|^2 =a^2,$ where a > 0 is a constant, λ appears as a Lagrange multiplier. We focus on the pure L2-supercritical case and combination case of L2-subcritical and L2-supercritical nonlinearities \begin{equation*}f(u)=\tau |u|^{q-2}u+|u|^{p-2}u,\quad \tau \gt 0,\qquad{\rm where}\ \ 2 \lt q \lt 2+\frac{4}{N} \ {\rm and} \quad \ p \gt \bar{p},\end{equation*} where $\bar{p}:=4+\frac{4}{N}$ is the L2-critical exponent. Our work extends and develops some recent results in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信