定量结构-活性关系预测农药对大型蚤的毒性

IF 2.4 4区 环境科学与生态学 Q2 ECOLOGY
Cong Chen, Bowen Yang, Mingwang Li, Saijin Huang, Xianwei Huang
{"title":"定量结构-活性关系预测农药对大型蚤的毒性","authors":"Cong Chen, Bowen Yang, Mingwang Li, Saijin Huang, Xianwei Huang","doi":"10.1007/s10646-024-02751-1","DOIUrl":null,"url":null,"abstract":"<p>Global pesticide usage reaching 2.7 million metric tons annually, brings a grave threat to non-target organisms, especially aquatic organisms, resulting in serious concerns. Predicting aquatic toxicity of pesticides towards <i>Daphnia magna</i> is significant. In this work, random forest (RF) algorithm, together with ten Dragon molecular descriptors, was successfully utilized to develop a quantitative structure–activity/toxicity relationship (QSAR/QSTR) model for the toxicity p<i>EC</i><sub>50</sub> of 745 pesticides towards <i>Daphnia magna</i>. The optimal QSTR model (RF Model I) based on the RF parameters of <i>ntree</i> = 50, <i>mtry</i> = 3 and <i>nodesize</i> = 5, yielded <i>R</i><sup>2</sup> = 0.877, <i>MAE</i> = 0.570, <i>rms</i> = 0.739 (training set of 596 p<i>EC</i><sub>50</sub>), <i>R</i><sup>2</sup> = 0.807, <i>MAE</i> = 0.732, <i>rms</i> = 0.902 (test set of 149 pEC<sub>50</sub>), and <i>R</i><sup>2</sup> = 0.863, <i>MAE</i> = 0.602, <i>rms</i> = 0.774 (total set of 745 p<i>EC</i><sub>50</sub>), which are accurate and satisfactory. The optimal RF model is comparable to other published QSTR models for <i>Daphnia magna</i>, although the optimal RF model possessed a small descriptor subset and dealt with a large dataset of pesticide toxicity p<i>EC</i><sub>50</sub>. Thus, the investigation in this work provides a reliable, applicable QSTR model for predicting the toxicity p<i>EC</i><sub>50</sub> of pesticides towards <i>Daphnia magna</i>.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":"205 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative structure–activity relationship predicting toxicity of pesticides towards Daphnia magna\",\"authors\":\"Cong Chen, Bowen Yang, Mingwang Li, Saijin Huang, Xianwei Huang\",\"doi\":\"10.1007/s10646-024-02751-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Global pesticide usage reaching 2.7 million metric tons annually, brings a grave threat to non-target organisms, especially aquatic organisms, resulting in serious concerns. Predicting aquatic toxicity of pesticides towards <i>Daphnia magna</i> is significant. In this work, random forest (RF) algorithm, together with ten Dragon molecular descriptors, was successfully utilized to develop a quantitative structure–activity/toxicity relationship (QSAR/QSTR) model for the toxicity p<i>EC</i><sub>50</sub> of 745 pesticides towards <i>Daphnia magna</i>. The optimal QSTR model (RF Model I) based on the RF parameters of <i>ntree</i> = 50, <i>mtry</i> = 3 and <i>nodesize</i> = 5, yielded <i>R</i><sup>2</sup> = 0.877, <i>MAE</i> = 0.570, <i>rms</i> = 0.739 (training set of 596 p<i>EC</i><sub>50</sub>), <i>R</i><sup>2</sup> = 0.807, <i>MAE</i> = 0.732, <i>rms</i> = 0.902 (test set of 149 pEC<sub>50</sub>), and <i>R</i><sup>2</sup> = 0.863, <i>MAE</i> = 0.602, <i>rms</i> = 0.774 (total set of 745 p<i>EC</i><sub>50</sub>), which are accurate and satisfactory. The optimal RF model is comparable to other published QSTR models for <i>Daphnia magna</i>, although the optimal RF model possessed a small descriptor subset and dealt with a large dataset of pesticide toxicity p<i>EC</i><sub>50</sub>. Thus, the investigation in this work provides a reliable, applicable QSTR model for predicting the toxicity p<i>EC</i><sub>50</sub> of pesticides towards <i>Daphnia magna</i>.</p>\",\"PeriodicalId\":11497,\"journal\":{\"name\":\"Ecotoxicology\",\"volume\":\"205 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10646-024-02751-1\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-024-02751-1","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

全球农药用量每年达到 270 万公吨,给非目标生物,尤其是水生生物带来了严重威胁,引起了严重关注。预测农药对大型水蚤的水生毒性意义重大。本研究利用随机森林(RF)算法和 10 个龙分子描述符,成功地建立了 745 种农药对大型水蚤毒性 pEC50 的定量结构-活性/毒性关系(QSAR/QSTR)模型。基于 ntree = 50、mtry = 3 和 nodesize = 5 的 RF 参数的最佳 QSTR 模型(RF 模型 I)得出 R2 = 0.877、MAE = 0.570、rms = 0.739(训练集为 596 pEC50)、R2 = 0.807, MAE = 0.732, rms = 0.902 (test set of 149 pEC50), and R2 = 0.863, MAE = 0.602, rms = 0.774 (total set of 745 pEC50),结果准确且令人满意。虽然最优 RF 模型的描述子集较小,且处理的农药毒性 pEC50 数据集较大,但其与其他已发表的大型蚤 QSTR 模型具有可比性。因此,这项研究为预测农药对大型蚤的毒性 pEC50 提供了一个可靠、适用的 QSTR 模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantitative structure–activity relationship predicting toxicity of pesticides towards Daphnia magna

Quantitative structure–activity relationship predicting toxicity of pesticides towards Daphnia magna

Global pesticide usage reaching 2.7 million metric tons annually, brings a grave threat to non-target organisms, especially aquatic organisms, resulting in serious concerns. Predicting aquatic toxicity of pesticides towards Daphnia magna is significant. In this work, random forest (RF) algorithm, together with ten Dragon molecular descriptors, was successfully utilized to develop a quantitative structure–activity/toxicity relationship (QSAR/QSTR) model for the toxicity pEC50 of 745 pesticides towards Daphnia magna. The optimal QSTR model (RF Model I) based on the RF parameters of ntree = 50, mtry = 3 and nodesize = 5, yielded R2 = 0.877, MAE = 0.570, rms = 0.739 (training set of 596 pEC50), R2 = 0.807, MAE = 0.732, rms = 0.902 (test set of 149 pEC50), and R2 = 0.863, MAE = 0.602, rms = 0.774 (total set of 745 pEC50), which are accurate and satisfactory. The optimal RF model is comparable to other published QSTR models for Daphnia magna, although the optimal RF model possessed a small descriptor subset and dealt with a large dataset of pesticide toxicity pEC50. Thus, the investigation in this work provides a reliable, applicable QSTR model for predicting the toxicity pEC50 of pesticides towards Daphnia magna.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecotoxicology
Ecotoxicology 环境科学-毒理学
CiteScore
5.30
自引率
3.70%
发文量
107
审稿时长
4.7 months
期刊介绍: Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信