{"title":"不同极性的聚α-烯烃和癸二酸二异辛酯基油对油酸表面包覆的超小型氧化铈纳米粒子的敏感性","authors":"Lijie Bian, Ningning Song, Laigui Yu, Yujuan Zhang, Pingyu Zhang, Shengmao Zhang","doi":"10.1002/ls.1703","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A key issue for nano-additive to effectively exert tribological function is to ensure its entrance to and adhesion on the frictional contact surfaces. But the adhesion of nano-additive on the rubbed surfaces under oil lubrication faces the challenge of the competitive adsorption of lubricant base oil thereon. In this study, oleic acid–modified ultra-small cerium oxide (OA-CeO<sub>2</sub>) nanoparticle was synthesised by one-pot liquid-phase surface-modification method in the presence of OA as the surface modifier. The susceptibility of non-polar poly–alpha olefin 6 (PAO6) and polar diisooctyl sebacate (DIOS) base oils to the as-prepared OA-CeO<sub>2</sub> nano-additive was investigated, and the effect of the OA-CeO<sub>2</sub> nano-additive on the friction-reducing and anti-wear abilities of the two kinds of base oils towards a steel–steel sliding contact was investigated with four-ball friction and wear tester. Furthermore, the tribological mechanism of the adsorption and deposition of the OA-CeO<sub>2</sub> nano-additive on the surface of friction steel and the competitive adsorption of base oil were discussed. Characterisations by scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy demonstrate that the as-prepared OA-CeO<sub>2</sub> nanoparticle is of a spherical shape and has an ultra-small average size of 1.2 nm. As the lubricant additive in PAO6 and DIOS base oils, the OA-CeO<sub>2</sub> nano-additive exhibits different tribological properties, which is attributed to the difference in the base oils' polarity. Namely, the CeO<sub>2</sub> nanoparticle in the non-polar PAO6 base oil is more easily adsorbed on the rubbed surface of the steel–steel sliding contact, thereby forming the CeO<sub>2</sub> deposition film to improve the tribological properties of the base oil. However, the CeO<sub>2</sub> nanoparticle added in polar DIOS base oil is difficult to form the CeO<sub>2</sub> deposition film, because of the competitive and preferential adsorption of the polar base oil on the rubbed steel surface. Therefore, it is imperative to select the base oils with proper polarity to better exert the friction-reducing and anti-wear functions of the OA-CeO<sub>2</sub> nano-additive.</p>\n </div>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"36 6","pages":"478-488"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Susceptibility of Poly–Alpha Olefin and Diisooctyl Sebacate Base Oils With Different Polarities to Oleic Acid Surface–Capped Ultra-Small Cerium Oxide Nanoparticle\",\"authors\":\"Lijie Bian, Ningning Song, Laigui Yu, Yujuan Zhang, Pingyu Zhang, Shengmao Zhang\",\"doi\":\"10.1002/ls.1703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>A key issue for nano-additive to effectively exert tribological function is to ensure its entrance to and adhesion on the frictional contact surfaces. But the adhesion of nano-additive on the rubbed surfaces under oil lubrication faces the challenge of the competitive adsorption of lubricant base oil thereon. In this study, oleic acid–modified ultra-small cerium oxide (OA-CeO<sub>2</sub>) nanoparticle was synthesised by one-pot liquid-phase surface-modification method in the presence of OA as the surface modifier. The susceptibility of non-polar poly–alpha olefin 6 (PAO6) and polar diisooctyl sebacate (DIOS) base oils to the as-prepared OA-CeO<sub>2</sub> nano-additive was investigated, and the effect of the OA-CeO<sub>2</sub> nano-additive on the friction-reducing and anti-wear abilities of the two kinds of base oils towards a steel–steel sliding contact was investigated with four-ball friction and wear tester. Furthermore, the tribological mechanism of the adsorption and deposition of the OA-CeO<sub>2</sub> nano-additive on the surface of friction steel and the competitive adsorption of base oil were discussed. Characterisations by scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy demonstrate that the as-prepared OA-CeO<sub>2</sub> nanoparticle is of a spherical shape and has an ultra-small average size of 1.2 nm. As the lubricant additive in PAO6 and DIOS base oils, the OA-CeO<sub>2</sub> nano-additive exhibits different tribological properties, which is attributed to the difference in the base oils' polarity. Namely, the CeO<sub>2</sub> nanoparticle in the non-polar PAO6 base oil is more easily adsorbed on the rubbed surface of the steel–steel sliding contact, thereby forming the CeO<sub>2</sub> deposition film to improve the tribological properties of the base oil. However, the CeO<sub>2</sub> nanoparticle added in polar DIOS base oil is difficult to form the CeO<sub>2</sub> deposition film, because of the competitive and preferential adsorption of the polar base oil on the rubbed steel surface. Therefore, it is imperative to select the base oils with proper polarity to better exert the friction-reducing and anti-wear functions of the OA-CeO<sub>2</sub> nano-additive.</p>\\n </div>\",\"PeriodicalId\":18114,\"journal\":{\"name\":\"Lubrication Science\",\"volume\":\"36 6\",\"pages\":\"478-488\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubrication Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ls.1703\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubrication Science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ls.1703","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Susceptibility of Poly–Alpha Olefin and Diisooctyl Sebacate Base Oils With Different Polarities to Oleic Acid Surface–Capped Ultra-Small Cerium Oxide Nanoparticle
A key issue for nano-additive to effectively exert tribological function is to ensure its entrance to and adhesion on the frictional contact surfaces. But the adhesion of nano-additive on the rubbed surfaces under oil lubrication faces the challenge of the competitive adsorption of lubricant base oil thereon. In this study, oleic acid–modified ultra-small cerium oxide (OA-CeO2) nanoparticle was synthesised by one-pot liquid-phase surface-modification method in the presence of OA as the surface modifier. The susceptibility of non-polar poly–alpha olefin 6 (PAO6) and polar diisooctyl sebacate (DIOS) base oils to the as-prepared OA-CeO2 nano-additive was investigated, and the effect of the OA-CeO2 nano-additive on the friction-reducing and anti-wear abilities of the two kinds of base oils towards a steel–steel sliding contact was investigated with four-ball friction and wear tester. Furthermore, the tribological mechanism of the adsorption and deposition of the OA-CeO2 nano-additive on the surface of friction steel and the competitive adsorption of base oil were discussed. Characterisations by scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy demonstrate that the as-prepared OA-CeO2 nanoparticle is of a spherical shape and has an ultra-small average size of 1.2 nm. As the lubricant additive in PAO6 and DIOS base oils, the OA-CeO2 nano-additive exhibits different tribological properties, which is attributed to the difference in the base oils' polarity. Namely, the CeO2 nanoparticle in the non-polar PAO6 base oil is more easily adsorbed on the rubbed surface of the steel–steel sliding contact, thereby forming the CeO2 deposition film to improve the tribological properties of the base oil. However, the CeO2 nanoparticle added in polar DIOS base oil is difficult to form the CeO2 deposition film, because of the competitive and preferential adsorption of the polar base oil on the rubbed steel surface. Therefore, it is imperative to select the base oils with proper polarity to better exert the friction-reducing and anti-wear functions of the OA-CeO2 nano-additive.
期刊介绍:
Lubrication Science is devoted to high-quality research which notably advances fundamental and applied aspects of the science and technology related to lubrication. It publishes research articles, short communications and reviews which demonstrate novelty and cutting edge science in the field, aiming to become a key specialised venue for communicating advances in lubrication research and development.
Lubrication is a diverse discipline ranging from lubrication concepts in industrial and automotive engineering, solid-state and gas lubrication, micro & nanolubrication phenomena, to lubrication in biological systems. To investigate these areas the scope of the journal encourages fundamental and application-based studies on:
Synthesis, chemistry and the broader development of high-performing and environmentally adapted lubricants and additives.
State of the art analytical tools and characterisation of lubricants, lubricated surfaces and interfaces.
Solid lubricants, self-lubricating coatings and composites, lubricating nanoparticles.
Gas lubrication.
Extreme-conditions lubrication.
Green-lubrication technology and lubricants.
Tribochemistry and tribocorrosion of environment- and lubricant-interface interactions.
Modelling of lubrication mechanisms and interface phenomena on different scales: from atomic and molecular to mezzo and structural.
Modelling hydrodynamic and thin film lubrication.
All lubrication related aspects of nanotribology.
Surface-lubricant interface interactions and phenomena: wetting, adhesion and adsorption.
Bio-lubrication, bio-lubricants and lubricated biological systems.
Other novel and cutting-edge aspects of lubrication in all lubrication regimes.