{"title":"利用改进型 YOLOV5 研究并实现嵌入式交通标志检测模型","authors":"Tong Hu, Zhengwei Gong, Jun Song","doi":"10.1007/s12239-024-00082-y","DOIUrl":null,"url":null,"abstract":"<p>This study proposes an embedded traffic sign detection system, YOLOV5-MCBS, based on an enhanced YOLOv5 algorithm. This system aims to mitigate the impact of traditional target detection algorithms’ high computational complexity and low detection accuracy on traffic sign detection performance, thereby improving accuracy and real-time performance. Our primary objective is to develop a lightweight network that enhances detection accuracy, enabling real-time detection on embedded systems. First, to minimize computation and model size, we replaced the original YOLOv5 algorithm’s backbone feature network with a lightweight MobileNetV3 network. Subsequently, we introduced the convolutional block attention module into the neck network to optimize the feature fusion stage’s attention and enhance model detection accuracy. Concurrently, we employed the bidirectional feature pyramid network in the neck layer for multi-scale feature fusion. Additionally, we incorporated a small target detection layer into the original network output layer to enhance detection performance. What’s more, we transplanted the enhanced algorithm into a Raspberry Pi embedded system to validate its real-time detection performance. Finally, we conducted computer simulations to assess our algorithm’s performance by comparing it with existing target detection algorithms. Experimental results suggest that the enhanced algorithm achieves an average precision mean (mAP @ 0.5) value of 95.3% and frames per second value of 91.1 on the embedded system.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research and Implementation of an Embedded Traffic Sign Detection Model Using Improved YOLOV5\",\"authors\":\"Tong Hu, Zhengwei Gong, Jun Song\",\"doi\":\"10.1007/s12239-024-00082-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study proposes an embedded traffic sign detection system, YOLOV5-MCBS, based on an enhanced YOLOv5 algorithm. This system aims to mitigate the impact of traditional target detection algorithms’ high computational complexity and low detection accuracy on traffic sign detection performance, thereby improving accuracy and real-time performance. Our primary objective is to develop a lightweight network that enhances detection accuracy, enabling real-time detection on embedded systems. First, to minimize computation and model size, we replaced the original YOLOv5 algorithm’s backbone feature network with a lightweight MobileNetV3 network. Subsequently, we introduced the convolutional block attention module into the neck network to optimize the feature fusion stage’s attention and enhance model detection accuracy. Concurrently, we employed the bidirectional feature pyramid network in the neck layer for multi-scale feature fusion. Additionally, we incorporated a small target detection layer into the original network output layer to enhance detection performance. What’s more, we transplanted the enhanced algorithm into a Raspberry Pi embedded system to validate its real-time detection performance. Finally, we conducted computer simulations to assess our algorithm’s performance by comparing it with existing target detection algorithms. Experimental results suggest that the enhanced algorithm achieves an average precision mean (mAP @ 0.5) value of 95.3% and frames per second value of 91.1 on the embedded system.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12239-024-00082-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00082-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Research and Implementation of an Embedded Traffic Sign Detection Model Using Improved YOLOV5
This study proposes an embedded traffic sign detection system, YOLOV5-MCBS, based on an enhanced YOLOv5 algorithm. This system aims to mitigate the impact of traditional target detection algorithms’ high computational complexity and low detection accuracy on traffic sign detection performance, thereby improving accuracy and real-time performance. Our primary objective is to develop a lightweight network that enhances detection accuracy, enabling real-time detection on embedded systems. First, to minimize computation and model size, we replaced the original YOLOv5 algorithm’s backbone feature network with a lightweight MobileNetV3 network. Subsequently, we introduced the convolutional block attention module into the neck network to optimize the feature fusion stage’s attention and enhance model detection accuracy. Concurrently, we employed the bidirectional feature pyramid network in the neck layer for multi-scale feature fusion. Additionally, we incorporated a small target detection layer into the original network output layer to enhance detection performance. What’s more, we transplanted the enhanced algorithm into a Raspberry Pi embedded system to validate its real-time detection performance. Finally, we conducted computer simulations to assess our algorithm’s performance by comparing it with existing target detection algorithms. Experimental results suggest that the enhanced algorithm achieves an average precision mean (mAP @ 0.5) value of 95.3% and frames per second value of 91.1 on the embedded system.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.