{"title":"用于钯催化赫克偶联反应的膦掺杂金属有机框架","authors":"Wenmiao Chen, Insha Shaikh, Fatma Ahmed, Sahar Karkoub, Mamoun AlRawashdeh, Hongcai Zhou, Sherzod Madrahimov","doi":"10.1002/open.202300249","DOIUrl":null,"url":null,"abstract":"<p>As an emerging material with the potential to combine the high efficiency of homogeneous catalysts and high stability and recyclability of heterogeneous catalysts, metal-organic frameworks (MOFs) have been viewed as one of the candidates to produce catalysts of the next generation. Herein, we heterogenized the highly active mono(phosphine)-Pd complex on surface of UiO-66 MOF, as a catalyst for Suzuki and Heck cross coupling reactions. The successful immobilization of these Pd-monophosphine complexes on MOF surface to form <b>UiO-66-PPh<sub>2</sub>–Pd</b> was characterized and confirmed via comprehensive set of analytical methods. <b>UiO-66-PPh<sub>2</sub>–Pd</b> showed high activity and selectivity for both Suzuki and Heck Cross Coupling Reactions. This strategy enabled facile access to mono(phosphine) complexes which are challenging to design and require multistep synthesis in homogeneous systems, paving the way for future MOF catalysts applications by similar systems.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/open.202300249","citationCount":"0","resultStr":"{\"title\":\"Phosphine-incorporated Metal-Organic Framework for Palladium Catalyzed Heck Coupling Reaction\",\"authors\":\"Wenmiao Chen, Insha Shaikh, Fatma Ahmed, Sahar Karkoub, Mamoun AlRawashdeh, Hongcai Zhou, Sherzod Madrahimov\",\"doi\":\"10.1002/open.202300249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As an emerging material with the potential to combine the high efficiency of homogeneous catalysts and high stability and recyclability of heterogeneous catalysts, metal-organic frameworks (MOFs) have been viewed as one of the candidates to produce catalysts of the next generation. Herein, we heterogenized the highly active mono(phosphine)-Pd complex on surface of UiO-66 MOF, as a catalyst for Suzuki and Heck cross coupling reactions. The successful immobilization of these Pd-monophosphine complexes on MOF surface to form <b>UiO-66-PPh<sub>2</sub>–Pd</b> was characterized and confirmed via comprehensive set of analytical methods. <b>UiO-66-PPh<sub>2</sub>–Pd</b> showed high activity and selectivity for both Suzuki and Heck Cross Coupling Reactions. This strategy enabled facile access to mono(phosphine) complexes which are challenging to design and require multistep synthesis in homogeneous systems, paving the way for future MOF catalysts applications by similar systems.</p>\",\"PeriodicalId\":9831,\"journal\":{\"name\":\"ChemistryOpen\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/open.202300249\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemistryOpen\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/open.202300249\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryOpen","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/open.202300249","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Phosphine-incorporated Metal-Organic Framework for Palladium Catalyzed Heck Coupling Reaction
As an emerging material with the potential to combine the high efficiency of homogeneous catalysts and high stability and recyclability of heterogeneous catalysts, metal-organic frameworks (MOFs) have been viewed as one of the candidates to produce catalysts of the next generation. Herein, we heterogenized the highly active mono(phosphine)-Pd complex on surface of UiO-66 MOF, as a catalyst for Suzuki and Heck cross coupling reactions. The successful immobilization of these Pd-monophosphine complexes on MOF surface to form UiO-66-PPh2–Pd was characterized and confirmed via comprehensive set of analytical methods. UiO-66-PPh2–Pd showed high activity and selectivity for both Suzuki and Heck Cross Coupling Reactions. This strategy enabled facile access to mono(phosphine) complexes which are challenging to design and require multistep synthesis in homogeneous systems, paving the way for future MOF catalysts applications by similar systems.
期刊介绍:
ChemistryOpen is a multidisciplinary, gold-road open-access, international forum for the publication of outstanding Reviews, Full Papers, and Communications from all areas of chemistry and related fields. It is co-owned by 16 continental European Chemical Societies, who have banded together in the alliance called ChemPubSoc Europe for the purpose of publishing high-quality journals in the field of chemistry and its border disciplines. As some of the governments of the countries represented in ChemPubSoc Europe have strongly recommended that the research conducted with their funding is freely accessible for all readers (Open Access), ChemPubSoc Europe was concerned that no journal for which the ethical standards were monitored by a chemical society was available for such papers. ChemistryOpen fills this gap.