关于可解析性、连通性和伪紧密性

IF 0.6 3区 数学 Q3 MATHEMATICS
A. E. Lipin
{"title":"关于可解析性、连通性和伪紧密性","authors":"A. E. Lipin","doi":"10.1007/s10474-024-01423-0","DOIUrl":null,"url":null,"abstract":"<div><p>\nWe prove that:\nI. If <i>L</i> is a <span>\\(T_1\\)</span> space, <span>\\(|L|&gt;1\\)</span> and <span>\\(d(L) \\leq \\kappa \\geq \\omega\\)</span>, then\nthere is a submaximal dense subspace <i>X</i> of <span>\\(L^{2^\\kappa}\\)</span> such that <span>\\(|X|=\\Delta(X)=\\kappa\\)</span>. \nII. If <span>\\(\\mathfrak{c}\\leq\\kappa=\\kappa^\\omega&lt;\\lambda\\)</span> and <span>\\(2^\\kappa=2^\\lambda\\)</span>, then there is a Tychonoff pseudocompact globally and locally connected space <i>X</i> such that <span>\\(|X|=\\Delta(X)=\\lambda\\)</span> and <i>X</i> is not <span>\\(\\kappa^+\\)</span>-resolvable. \nIII. If <span>\\(\\omega_1\\leq\\kappa&lt;\\lambda\\)</span> and <span>\\(2^\\kappa=2^\\lambda\\)</span>, then there is a regular space <i>X</i> such that <span>\\(|X|=\\Delta(X)=\\lambda\\)</span>, all continuous real-valued functions on <i>X</i> are constant (so <i>X</i> is connected) and <i>X</i> is not <span>\\(\\kappa^+\\)</span>-resolvable.\n</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"172 2","pages":"519 - 528"},"PeriodicalIF":0.6000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On resolvability, connectedness and pseudocompactness\",\"authors\":\"A. E. Lipin\",\"doi\":\"10.1007/s10474-024-01423-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>\\nWe prove that:\\nI. If <i>L</i> is a <span>\\\\(T_1\\\\)</span> space, <span>\\\\(|L|&gt;1\\\\)</span> and <span>\\\\(d(L) \\\\leq \\\\kappa \\\\geq \\\\omega\\\\)</span>, then\\nthere is a submaximal dense subspace <i>X</i> of <span>\\\\(L^{2^\\\\kappa}\\\\)</span> such that <span>\\\\(|X|=\\\\Delta(X)=\\\\kappa\\\\)</span>. \\nII. If <span>\\\\(\\\\mathfrak{c}\\\\leq\\\\kappa=\\\\kappa^\\\\omega&lt;\\\\lambda\\\\)</span> and <span>\\\\(2^\\\\kappa=2^\\\\lambda\\\\)</span>, then there is a Tychonoff pseudocompact globally and locally connected space <i>X</i> such that <span>\\\\(|X|=\\\\Delta(X)=\\\\lambda\\\\)</span> and <i>X</i> is not <span>\\\\(\\\\kappa^+\\\\)</span>-resolvable. \\nIII. If <span>\\\\(\\\\omega_1\\\\leq\\\\kappa&lt;\\\\lambda\\\\)</span> and <span>\\\\(2^\\\\kappa=2^\\\\lambda\\\\)</span>, then there is a regular space <i>X</i> such that <span>\\\\(|X|=\\\\Delta(X)=\\\\lambda\\\\)</span>, all continuous real-valued functions on <i>X</i> are constant (so <i>X</i> is connected) and <i>X</i> is not <span>\\\\(\\\\kappa^+\\\\)</span>-resolvable.\\n</p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"172 2\",\"pages\":\"519 - 528\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-024-01423-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01423-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明:I.如果 L 是一个 \(T_1\)空间,\(|L|>1\)并且 \(d(L) \leq \kappa \geq \omega\),那么 \(L^{2^\kappa}\) 有一个子最大密集子空间 X,使得 \(|X|=\Delta(X)=\kappa\)。II.如果(\mathfrak{c}\leq\kappa=\kappa^\omega<\lambda\)和(2^\kappa=2^\lambda\),那么存在一个Tychonoff伪紧密全局和局部连通空间X,使得\(|X|=\Delta(X)=\lambda\)并且X不是\(\kappa^+\)-可解决的。III.如果 \(\omega_1leq\kappa<\lambda\) 和 \(2^\kappa=2^\lambda\) ,那么存在一个正则空间 X,使得 \(|X|=\Delta(X)=\lambda\),X 上所有连续实值函数都是常数(所以 X 是连通的),并且 X 不是 \(\kappa^+\)-可解决的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On resolvability, connectedness and pseudocompactness

We prove that: I. If L is a \(T_1\) space, \(|L|>1\) and \(d(L) \leq \kappa \geq \omega\), then there is a submaximal dense subspace X of \(L^{2^\kappa}\) such that \(|X|=\Delta(X)=\kappa\). II. If \(\mathfrak{c}\leq\kappa=\kappa^\omega<\lambda\) and \(2^\kappa=2^\lambda\), then there is a Tychonoff pseudocompact globally and locally connected space X such that \(|X|=\Delta(X)=\lambda\) and X is not \(\kappa^+\)-resolvable. III. If \(\omega_1\leq\kappa<\lambda\) and \(2^\kappa=2^\lambda\), then there is a regular space X such that \(|X|=\Delta(X)=\lambda\), all continuous real-valued functions on X are constant (so X is connected) and X is not \(\kappa^+\)-resolvable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信