5 核和 7 核分区的新无限同余族

Pub Date : 2024-04-10 DOI:10.1007/s10474-024-01424-z
Z. Meng, O. X. M. Yao
{"title":"5 核和 7 核分区的新无限同余族","authors":"Z. Meng,&nbsp;O. X. M. Yao","doi":"10.1007/s10474-024-01424-z","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(a_t(n)\\)</span> denote the number of <i>t</i>-core partitions of <i>n</i>. In recent years, a number of congruences for <span>\\(a_t(n)\\)</span> have been discovered for some small <i>t</i>. Very recently, Fathima and Pore [4] established infinite families of congruences modulo 3 for <span>\\(a_5(n)\\)</span> and congruences modulo 2 for <span>\\(a_7(n)\\)</span>. Motivated by their work, we prove some new infinite families of congruences modulo 3 for <span>\\(a_5(n)\\)</span> and congruences modulo 2 for <span>\\(a_7(n)\\)</span> by utilizing Newman's identities.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New infinite families of congruences for 5-core and 7-core partitions\",\"authors\":\"Z. Meng,&nbsp;O. X. M. Yao\",\"doi\":\"10.1007/s10474-024-01424-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(a_t(n)\\\\)</span> denote the number of <i>t</i>-core partitions of <i>n</i>. In recent years, a number of congruences for <span>\\\\(a_t(n)\\\\)</span> have been discovered for some small <i>t</i>. Very recently, Fathima and Pore [4] established infinite families of congruences modulo 3 for <span>\\\\(a_5(n)\\\\)</span> and congruences modulo 2 for <span>\\\\(a_7(n)\\\\)</span>. Motivated by their work, we prove some new infinite families of congruences modulo 3 for <span>\\\\(a_5(n)\\\\)</span> and congruences modulo 2 for <span>\\\\(a_7(n)\\\\)</span> by utilizing Newman's identities.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-024-01424-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01424-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,Fathima 和 Pore [4] 为 \(a_5(n)\) 建立了 modulo 3 的无穷同余族,为 \(a_7(n)\) 建立了 modulo 2 的同余族。受他们工作的启发,我们利用纽曼同素异形证明了一些新的无穷同素异形族,即 \(a_5(n)\) 的模 3 同素异形族和\(a_7(n)\) 的模 2 同素异形族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
New infinite families of congruences for 5-core and 7-core partitions

Let \(a_t(n)\) denote the number of t-core partitions of n. In recent years, a number of congruences for \(a_t(n)\) have been discovered for some small t. Very recently, Fathima and Pore [4] established infinite families of congruences modulo 3 for \(a_5(n)\) and congruences modulo 2 for \(a_7(n)\). Motivated by their work, we prove some new infinite families of congruences modulo 3 for \(a_5(n)\) and congruences modulo 2 for \(a_7(n)\) by utilizing Newman's identities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信