分形和集属性

IF 0.6 3区 数学 Q3 MATHEMATICS
D. Kong, Z. Wang
{"title":"分形和集属性","authors":"D. Kong,&nbsp;Z. Wang","doi":"10.1007/s10474-024-01421-2","DOIUrl":null,"url":null,"abstract":"<div><p>\nWe introduce two notions of fractal sumset properties.\nA compact set <span>\\(K\\subset\\mathbb{R}^d\\)</span> is said to have the <i>Hausdorff sumset property</i> (HSP) if for any <span>\\(\\ell\\in\\mathbb{N}_{\\ge 2}\\)</span> there exist compact sets <span>\\(K_1,K_2\\)</span>,..., <span>\\(K_\\ell\\)</span> such that <span>\\(K_1+K_2+\\cdots+K_\\ell\\subset K\\)</span> and <span>\\(\\dim_H K_i=\\dim_H K\\)</span> for all <span>\\(1\\le i\\le \\ell\\)</span>.\nAnalogously, if we replace the Hausdorff dimension by the packing dimension in the definition of HSP, then the compact set <span>\\(K\\subset\\mathbb{R}^d\\)</span> is said to have the <i>packing sumset property</i> (PSP).\nWe show that the HSP fails for certain homogeneous self-similar sets satisfying the strong separation condition, while the PSP holds for all homogeneous self-similar sets in <span>\\(\\mathbb{R}^d\\)</span>.\n</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"172 2","pages":"400 - 412"},"PeriodicalIF":0.6000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractal sumset properties\",\"authors\":\"D. Kong,&nbsp;Z. Wang\",\"doi\":\"10.1007/s10474-024-01421-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>\\nWe introduce two notions of fractal sumset properties.\\nA compact set <span>\\\\(K\\\\subset\\\\mathbb{R}^d\\\\)</span> is said to have the <i>Hausdorff sumset property</i> (HSP) if for any <span>\\\\(\\\\ell\\\\in\\\\mathbb{N}_{\\\\ge 2}\\\\)</span> there exist compact sets <span>\\\\(K_1,K_2\\\\)</span>,..., <span>\\\\(K_\\\\ell\\\\)</span> such that <span>\\\\(K_1+K_2+\\\\cdots+K_\\\\ell\\\\subset K\\\\)</span> and <span>\\\\(\\\\dim_H K_i=\\\\dim_H K\\\\)</span> for all <span>\\\\(1\\\\le i\\\\le \\\\ell\\\\)</span>.\\nAnalogously, if we replace the Hausdorff dimension by the packing dimension in the definition of HSP, then the compact set <span>\\\\(K\\\\subset\\\\mathbb{R}^d\\\\)</span> is said to have the <i>packing sumset property</i> (PSP).\\nWe show that the HSP fails for certain homogeneous self-similar sets satisfying the strong separation condition, while the PSP holds for all homogeneous self-similar sets in <span>\\\\(\\\\mathbb{R}^d\\\\)</span>.\\n</p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"172 2\",\"pages\":\"400 - 412\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-024-01421-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01421-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果对于任意的\(\ell\in\mathbb{N}_{\ge 2}\)存在紧凑集\(K_1,K_2\),....,\(K_ell\)使得\(K_1+K_2+\cdots+K_ell\subset K\) and \(\dim_H K_i=\dim_H K\) for all \(1\le i\le \ell\)。类似地,如果我们用打包维度代替 HSP 定义中的 Hausdorff 维度,那么紧凑集 \(K/subset/mathbb{R}^d\)就具有打包和集性质(PSP)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractal sumset properties

We introduce two notions of fractal sumset properties. A compact set \(K\subset\mathbb{R}^d\) is said to have the Hausdorff sumset property (HSP) if for any \(\ell\in\mathbb{N}_{\ge 2}\) there exist compact sets \(K_1,K_2\),..., \(K_\ell\) such that \(K_1+K_2+\cdots+K_\ell\subset K\) and \(\dim_H K_i=\dim_H K\) for all \(1\le i\le \ell\). Analogously, if we replace the Hausdorff dimension by the packing dimension in the definition of HSP, then the compact set \(K\subset\mathbb{R}^d\) is said to have the packing sumset property (PSP). We show that the HSP fails for certain homogeneous self-similar sets satisfying the strong separation condition, while the PSP holds for all homogeneous self-similar sets in \(\mathbb{R}^d\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信