跨领域可信表征学习调查

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ronghang Zhu, Dongliang Guo, Daiqing Qi, Zhixuan Chu, Xiang Yu, Sheng Li
{"title":"跨领域可信表征学习调查","authors":"Ronghang Zhu, Dongliang Guo, Daiqing Qi, Zhixuan Chu, Xiang Yu, Sheng Li","doi":"10.1145/3657301","DOIUrl":null,"url":null,"abstract":"<p>As AI systems have obtained significant performance to be deployed widely in our daily live and human society, people both enjoy the benefits brought by these technologies and suffer many social issues induced by these systems. To make AI systems good enough and trustworthy, plenty of researches have been done to build guidelines for trustworthy AI systems. Machine learning is one of the most important parts for AI systems and representation learning is the fundamental technology in machine learning. How to make the representation learning trustworthy in real-world application, e.g., cross domain scenarios, is very valuable and necessary for both machine learning and AI system fields. Inspired by the concepts in trustworthy AI, we proposed the first trustworthy representation learning across domains framework which includes four concepts, i.e, robustness, privacy, fairness, and explainability, to give a comprehensive literature review on this research direction. Specifically, we first introduce the details of the proposed trustworthy framework for representation learning across domains. Second, we provide basic notions and comprehensively summarize existing methods for the trustworthy framework from four concepts. Finally, we conclude this survey with insights and discussions on future research directions.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"58 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey of Trustworthy Representation Learning Across Domains\",\"authors\":\"Ronghang Zhu, Dongliang Guo, Daiqing Qi, Zhixuan Chu, Xiang Yu, Sheng Li\",\"doi\":\"10.1145/3657301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As AI systems have obtained significant performance to be deployed widely in our daily live and human society, people both enjoy the benefits brought by these technologies and suffer many social issues induced by these systems. To make AI systems good enough and trustworthy, plenty of researches have been done to build guidelines for trustworthy AI systems. Machine learning is one of the most important parts for AI systems and representation learning is the fundamental technology in machine learning. How to make the representation learning trustworthy in real-world application, e.g., cross domain scenarios, is very valuable and necessary for both machine learning and AI system fields. Inspired by the concepts in trustworthy AI, we proposed the first trustworthy representation learning across domains framework which includes four concepts, i.e, robustness, privacy, fairness, and explainability, to give a comprehensive literature review on this research direction. Specifically, we first introduce the details of the proposed trustworthy framework for representation learning across domains. Second, we provide basic notions and comprehensively summarize existing methods for the trustworthy framework from four concepts. Finally, we conclude this survey with insights and discussions on future research directions.</p>\",\"PeriodicalId\":49249,\"journal\":{\"name\":\"ACM Transactions on Knowledge Discovery from Data\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Knowledge Discovery from Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3657301\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3657301","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

随着人工智能系统在我们的日常生活和人类社会中广泛应用并取得显著成效,人们既享受着这些技术带来的好处,也承受着这些系统引发的诸多社会问题。为了使人工智能系统足够优秀和值得信赖,人们已经开展了大量研究,以建立值得信赖的人工智能系统指南。机器学习是人工智能系统最重要的组成部分之一,而表示学习是机器学习的基础技术。如何让表示学习在实际应用(如跨领域场景)中值得信赖,对于机器学习和人工智能系统领域来说都是非常有价值和必要的。受可信人工智能概念的启发,我们首次提出了跨领域可信表征学习框架,包括鲁棒性、隐私性、公平性和可解释性四个概念,对这一研究方向进行了全面的文献综述。具体来说,我们首先介绍了跨域表示学习可信框架的具体内容。其次,我们提供了基本概念,并从四个概念出发全面总结了可信框架的现有方法。最后,我们以对未来研究方向的见解和讨论结束本次调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Survey of Trustworthy Representation Learning Across Domains

As AI systems have obtained significant performance to be deployed widely in our daily live and human society, people both enjoy the benefits brought by these technologies and suffer many social issues induced by these systems. To make AI systems good enough and trustworthy, plenty of researches have been done to build guidelines for trustworthy AI systems. Machine learning is one of the most important parts for AI systems and representation learning is the fundamental technology in machine learning. How to make the representation learning trustworthy in real-world application, e.g., cross domain scenarios, is very valuable and necessary for both machine learning and AI system fields. Inspired by the concepts in trustworthy AI, we proposed the first trustworthy representation learning across domains framework which includes four concepts, i.e, robustness, privacy, fairness, and explainability, to give a comprehensive literature review on this research direction. Specifically, we first introduce the details of the proposed trustworthy framework for representation learning across domains. Second, we provide basic notions and comprehensively summarize existing methods for the trustworthy framework from four concepts. Finally, we conclude this survey with insights and discussions on future research directions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Knowledge Discovery from Data
ACM Transactions on Knowledge Discovery from Data COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
6.70
自引率
5.60%
发文量
172
审稿时长
3 months
期刊介绍: TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信