Iván del Moral-Sánchez, Edmund G. Wee, Yuejiao Xian, Wen-Hsin Lee, Joel D. Allen, Alba Torrents de la Peña, Rebeca Fróes Rocha, James Ferguson, André N. León, Sylvie Koekkoek, Edith E. Schermer, Judith A. Burger, Sanjeev Kumar, Robby Zwolsman, Mitch Brinkkemper, Aafke Aartse, Dirk Eggink, Julianna Han, Meng Yuan, Max Crispin, Gabriel Ozorowski, Andrew B. Ward, Ian A. Wilson, Tomáš Hanke, Kwinten Sliepen, Rogier W. Sanders
{"title":"用于 HIV-1 和流感核酸疫苗的三重串联三聚体免疫原","authors":"Iván del Moral-Sánchez, Edmund G. Wee, Yuejiao Xian, Wen-Hsin Lee, Joel D. Allen, Alba Torrents de la Peña, Rebeca Fróes Rocha, James Ferguson, André N. León, Sylvie Koekkoek, Edith E. Schermer, Judith A. Burger, Sanjeev Kumar, Robby Zwolsman, Mitch Brinkkemper, Aafke Aartse, Dirk Eggink, Julianna Han, Meng Yuan, Max Crispin, Gabriel Ozorowski, Andrew B. Ward, Ian A. Wilson, Tomáš Hanke, Kwinten Sliepen, Rogier W. Sanders","doi":"10.1038/s41541-024-00862-8","DOIUrl":null,"url":null,"abstract":"<p>Recombinant native-like HIV-1 envelope glycoprotein (Env) trimers are used in candidate vaccines aimed at inducing broadly neutralizing antibodies. While state-of-the-art SOSIP or single-chain Env designs can be expressed as native-like trimers, undesired monomers, dimers and malformed trimers that elicit non-neutralizing antibodies are also formed, implying that these designs could benefit from further modifications for gene-based vaccination approaches. Here, we describe the triple tandem trimer (TTT) design, in which three Env protomers are genetically linked in a single open reading frame and express as native-like trimers. Viral vectored Env TTT induced similar neutralization titers but with a higher proportion of trimer-specific responses. The TTT design was also applied to generate influenza hemagglutinin (HA) trimers without the need for trimerization domains. Additionally, we used TTT to generate well-folded chimeric Env and HA trimers that harbor protomers from three different strains. In summary, the TTT design is a useful platform for the design of HIV-1 Env and influenza HA immunogens for a multitude of vaccination strategies.</p>","PeriodicalId":19335,"journal":{"name":"NPJ Vaccines","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triple tandem trimer immunogens for HIV-1 and influenza nucleic acid-based vaccines\",\"authors\":\"Iván del Moral-Sánchez, Edmund G. Wee, Yuejiao Xian, Wen-Hsin Lee, Joel D. Allen, Alba Torrents de la Peña, Rebeca Fróes Rocha, James Ferguson, André N. León, Sylvie Koekkoek, Edith E. Schermer, Judith A. Burger, Sanjeev Kumar, Robby Zwolsman, Mitch Brinkkemper, Aafke Aartse, Dirk Eggink, Julianna Han, Meng Yuan, Max Crispin, Gabriel Ozorowski, Andrew B. Ward, Ian A. Wilson, Tomáš Hanke, Kwinten Sliepen, Rogier W. Sanders\",\"doi\":\"10.1038/s41541-024-00862-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recombinant native-like HIV-1 envelope glycoprotein (Env) trimers are used in candidate vaccines aimed at inducing broadly neutralizing antibodies. While state-of-the-art SOSIP or single-chain Env designs can be expressed as native-like trimers, undesired monomers, dimers and malformed trimers that elicit non-neutralizing antibodies are also formed, implying that these designs could benefit from further modifications for gene-based vaccination approaches. Here, we describe the triple tandem trimer (TTT) design, in which three Env protomers are genetically linked in a single open reading frame and express as native-like trimers. Viral vectored Env TTT induced similar neutralization titers but with a higher proportion of trimer-specific responses. The TTT design was also applied to generate influenza hemagglutinin (HA) trimers without the need for trimerization domains. Additionally, we used TTT to generate well-folded chimeric Env and HA trimers that harbor protomers from three different strains. In summary, the TTT design is a useful platform for the design of HIV-1 Env and influenza HA immunogens for a multitude of vaccination strategies.</p>\",\"PeriodicalId\":19335,\"journal\":{\"name\":\"NPJ Vaccines\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Vaccines\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41541-024-00862-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41541-024-00862-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Triple tandem trimer immunogens for HIV-1 and influenza nucleic acid-based vaccines
Recombinant native-like HIV-1 envelope glycoprotein (Env) trimers are used in candidate vaccines aimed at inducing broadly neutralizing antibodies. While state-of-the-art SOSIP or single-chain Env designs can be expressed as native-like trimers, undesired monomers, dimers and malformed trimers that elicit non-neutralizing antibodies are also formed, implying that these designs could benefit from further modifications for gene-based vaccination approaches. Here, we describe the triple tandem trimer (TTT) design, in which three Env protomers are genetically linked in a single open reading frame and express as native-like trimers. Viral vectored Env TTT induced similar neutralization titers but with a higher proportion of trimer-specific responses. The TTT design was also applied to generate influenza hemagglutinin (HA) trimers without the need for trimerization domains. Additionally, we used TTT to generate well-folded chimeric Env and HA trimers that harbor protomers from three different strains. In summary, the TTT design is a useful platform for the design of HIV-1 Env and influenza HA immunogens for a multitude of vaccination strategies.
NPJ VaccinesImmunology and Microbiology-Immunology
CiteScore
11.90
自引率
4.30%
发文量
146
审稿时长
11 weeks
期刊介绍:
Online-only and open access, npj Vaccines is dedicated to highlighting the most important scientific advances in vaccine research and development.