Michael Stuhr, Sebastian Hesse, Nancy Faßheber, Marcel Wohler, Mithun Pal, Yasuyuki Sakai, Patrick Hemberger, Gernot Friedrichs
下载PDF
{"title":"草酰氯的紫外线光解:ClCO 自由基分解和直接 Cl2${\\rm Cl}_2 {\\rm }$ 形成途径","authors":"Michael Stuhr, Sebastian Hesse, Nancy Faßheber, Marcel Wohler, Mithun Pal, Yasuyuki Sakai, Patrick Hemberger, Gernot Friedrichs","doi":"10.1002/kin.21723","DOIUrl":null,"url":null,"abstract":"<p>Oxalyl chloride, <span></span><math>\n <semantics>\n <msub>\n <mtext>(ClCO)</mtext>\n <mn>2</mn>\n </msub>\n <annotation>$\\text{(ClCO)}_2$</annotation>\n </semantics></math>, is widely used as a photolytic source of Cl atoms in reaction kinetics studies. <span></span><math>\n <semantics>\n <msub>\n <mtext>(ClCO)</mtext>\n <mn>2</mn>\n </msub>\n <annotation>$\\text{(ClCO)}_2$</annotation>\n </semantics></math> photolysis is typically assumed to produce Cl atoms with an overall yield of 2 via three-body dissociation, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>(ClCO)</mtext>\n <mn>2</mn>\n </msub>\n <mo>+</mo>\n <mi>h</mi>\n <mi>ν</mi>\n <mo>→</mo>\n <mtext>Cl</mtext>\n <mo>+</mo>\n <mtext>CO</mtext>\n <mo>+</mo>\n <msup>\n <mtext>ClCO</mtext>\n <mo>∗</mo>\n </msup>\n </mrow>\n <annotation>$\\text{(ClCO)}_2 + h\\nu \\rightarrow \\text{Cl} + \\text{CO} + \\text{ClCO}^*$</annotation>\n </semantics></math>, followed by fast subsequent ClCO unimolecular decomposition of either the energetically excited <span></span><math>\n <semantics>\n <msup>\n <mi>ClCO</mi>\n <mo>∗</mo>\n </msup>\n <annotation>${\\rm ClCO}^*$</annotation>\n </semantics></math> fragment, <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>ClCO</mtext>\n <mo>∗</mo>\n </msup>\n <mo>→</mo>\n <mtext>Cl</mtext>\n <mo>+</mo>\n <mtext>CO</mtext>\n </mrow>\n <annotation>$\\text{ClCO}^* \\rightarrow \\text{Cl} + \\text{CO}$</annotation>\n </semantics></math>, or the thermalized ClCO radical, <span></span><math>\n <semantics>\n <mrow>\n <mtext>ClCO</mtext>\n <mo>+</mo>\n <mi>M</mi>\n <mo>→</mo>\n <mtext>Cl</mtext>\n <mo>+</mo>\n <mtext>CO</mtext>\n <mo>+</mo>\n <mi>M</mi>\n </mrow>\n <annotation>$\\text{ClCO} + \\text{M} \\rightarrow \\text{Cl} + \\text{CO} + \\text{M}$</annotation>\n </semantics></math>. However, a study by Huang et al. (J. Phys. Chem. A 121 (2017) 2888–2895) found that UV photolysis of <span></span><math>\n <semantics>\n <msub>\n <mtext>(ClCO)</mtext>\n <mn>2</mn>\n </msub>\n <annotation>$\\text{(ClCO)}_2$</annotation>\n </semantics></math> at <span></span><math>\n <semantics>\n <mrow>\n <mn>248</mn>\n <mspace></mspace>\n <mi>nm</mi>\n </mrow>\n <annotation>$248\\ {\\rm nm}$</annotation>\n </semantics></math> directly yields <span></span><math>\n <semantics>\n <msub>\n <mi>Cl</mi>\n <mn>2</mn>\n </msub>\n <annotation>${\\rm Cl}_2$</annotation>\n </semantics></math> with a photolysis quantum yield of <span></span><math>\n <semantics>\n <mrow>\n <mi>ϕ</mi>\n <mo>(</mo>\n <msub>\n <mtext>Cl</mtext>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n <mo>></mo>\n <mn>14</mn>\n <mo>%</mo>\n </mrow>\n <annotation>$\\phi (\\text{Cl}_2) &gt; 14\\%$</annotation>\n </semantics></math>. This new product pathway may complicate the use of <span></span><math>\n <semantics>\n <msub>\n <mtext>(ClCO)</mtext>\n <mn>2</mn>\n </msub>\n <annotation>$\\text{(ClCO)}_2$</annotation>\n </semantics></math> as a clean source of Cl atoms and challenges the previously accepted photodissociation scheme. The purpose of the present work was 2-fold. Firstly, the unimolecular decomposition of <span></span><math>\n <semantics>\n <msup>\n <mi>ClCO</mi>\n <mo>∗</mo>\n </msup>\n <annotation>${\\rm ClCO}^*$</annotation>\n </semantics></math> and ClCO radicals has been investigated in <span></span><math>\n <semantics>\n <msub>\n <mtext>(ClCO)</mtext>\n <mn>2</mn>\n </msub>\n <annotation>$\\text{(ClCO)}_2$</annotation>\n </semantics></math>/<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>H</mi>\n <mn>6</mn>\n </msub>\n <mrow>\n <mo>/</mo>\n <mi>Ar</mi>\n </mrow>\n </mrow>\n <annotation>$\\text{C}_{2}\\text{H}_6{\\rm {/Ar}}$</annotation>\n </semantics></math> gas mixtures after UV photolysis at <span></span><math>\n <semantics>\n <mrow>\n <mn>266</mn>\n <mspace></mspace>\n <mrow></mrow>\n </mrow>\n <annotation>$266\\ {\\rm }$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mn>355</mn>\n <mspace></mspace>\n <mi>nm</mi>\n </mrow>\n <annotation>$355\\ {\\rm nm}$</annotation>\n </semantics></math>. Cl atoms were captured by <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>H</mi>\n <mn>6</mn>\n </msub>\n </mrow>\n <annotation>$\\text{C}_{2}\\text{H}_6$</annotation>\n </semantics></math> added in excess such that concentration-time profiles of HCl measured by means of mid-infrared frequency modulation spectroscopy reflect the temporally separated Cl formation pathways. The low-pressure thermal ClCO decomposition rate constant was determined to be <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mn>1.79</mn>\n <mo>±</mo>\n <mn>0.17</mn>\n <mo>)</mo>\n </mrow>\n <mo>×</mo>\n <msup>\n <mn>10</mn>\n <mrow>\n <mo>−</mo>\n <mn>14</mn>\n </mrow>\n </msup>\n <mspace></mspace>\n <msup>\n <mtext>cm</mtext>\n <mn>3</mn>\n </msup>\n <mspace></mspace>\n <msup>\n <mtext>molecule</mtext>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mspace></mspace>\n <msup>\n <mi>s</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$k = (1.79 \\pm 0.17)\\times 10^{-14}\\ \\text{cm}^{3}\\ \\text{molecule}^{-1}\\ \\text{s}^{-1}$</annotation>\n </semantics></math> at <span></span><math>\n <semantics>\n <mrow>\n <mn>295</mn>\n <mspace></mspace>\n <mi>K</mi>\n </mrow>\n <annotation>$295\\ {\\rm K}$</annotation>\n </semantics></math>, which is in very good agreement with previously reported literature values. Secondly, the photolysis quantum yield of direct <span></span><math>\n <semantics>\n <msub>\n <mi>Cl</mi>\n <mn>2</mn>\n </msub>\n <annotation>${\\rm Cl}_2$</annotation>\n </semantics></math> formation from <span></span><math>\n <semantics>\n <msub>\n <mtext>(ClCO)</mtext>\n <mn>2</mn>\n </msub>\n <annotation>$\\text{(ClCO)}_2$</annotation>\n </semantics></math> photofragmentation was studied with time-of-flight mass spectrometry using a photoelectron photoion coincidence setup. Calibrated <span></span><math>\n <semantics>\n <msub>\n <mi>Cl</mi>\n <mn>2</mn>\n </msub>\n <annotation>${\\rm Cl}_2$</annotation>\n </semantics></math> concentration-time profiles were recorded and analyzed using kinetic simulations accounting for both direct and secondary formation of <span></span><math>\n <semantics>\n <msub>\n <mi>Cl</mi>\n <mn>2</mn>\n </msub>\n <annotation>${\\rm Cl}_2$</annotation>\n </semantics></math> from photolysis and reactions involving Cl, ClCO, and <span></span><math>\n <semantics>\n <msub>\n <mtext>(ClCO)</mtext>\n <mn>2</mn>\n </msub>\n <annotation>$\\text{(ClCO)}_2$</annotation>\n </semantics></math>, respectively. Direct <span></span><math>\n <semantics>\n <msub>\n <mi>Cl</mi>\n <mn>2</mn>\n </msub>\n <annotation>${\\rm Cl}_2$</annotation>\n </semantics></math> formation could be confirmed, where wavelength-dependent quantum yields of <span></span><math>\n <semantics>\n <mrow>\n <mi>ϕ</mi>\n <mrow>\n <mo>(</mo>\n <msub>\n <mtext>Cl</mtext>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mn>5.0</mn>\n <mo>±</mo>\n <mn>1.6</mn>\n <mo>)</mo>\n </mrow>\n <mo>%</mo>\n </mrow>\n <annotation>$\\phi (\\text{Cl}_2) = (5.0 \\pm 1.6)\\%$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>10.0</mn>\n <mo>±</mo>\n <mn>3.3</mn>\n <mo>)</mo>\n <mo>%</mo>\n </mrow>\n <annotation>$(10.0 \\pm 3.3)\\%$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>5.6</mn>\n <mo>±</mo>\n <mn>2.0</mn>\n <mo>)</mo>\n <mo>%</mo>\n </mrow>\n <annotation>$(5.6 \\pm 2.0)\\%$</annotation>\n </semantics></math> at <span></span><math>\n <semantics>\n <mrow>\n <mn>213</mn>\n <mspace></mspace>\n <mi>nm</mi>\n </mrow>\n <annotation>$213\\ {\\rm nm}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mn>266</mn>\n <mspace></mspace>\n <mi>nm</mi>\n </mrow>\n <annotation>$266\\ {\\rm nm}$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <mn>355</mn>\n <mspace></mspace>\n <mi>nm</mi>\n </mrow>\n <annotation>$355\\ {\\rm nm}$</annotation>\n </semantics></math> were determined. Complementary quantum-chemical calculations of the potential energy diagram for ground-state photodissociation reveal a low-lying energy barrier for the formation of phosgene, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Cl</mi>\n <mn>2</mn>\n </msub>\n <mi>CO</mi>\n </mrow>\n <annotation>${\\rm Cl}_2{\\rm CO}$</annotation>\n </semantics></math>. We suggest that subsequent <span></span><math>\n <semantics>\n <msub>\n <mi>Cl</mi>\n <mn>2</mn>\n </msub>\n <annotation>${\\rm Cl}_2$</annotation>\n </semantics></math> and Cl formation from energetically excited <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Cl</mi>\n <mn>2</mn>\n </msub>\n <mi>CO</mi>\n </mrow>\n <annotation>${\\rm Cl}_2{\\rm CO}$</annotation>\n </semantics></math> may actually play a role for the overall photodissociation of <span></span><math>\n <semantics>\n <msub>\n <mtext>(ClCO)</mtext>\n <mn>2</mn>\n </msub>\n <annotation>$\\text{(ClCO)}_2$</annotation>\n </semantics></math>.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"56 8","pages":"482-498"},"PeriodicalIF":1.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/kin.21723","citationCount":"0","resultStr":"{\"title\":\"UV photolysis of oxalyl chloride: ClCO radical decomposition and direct \\n \\n \\n \\n Cl\\n 2\\n \\n \\n \\n ${\\\\rm Cl}_2 {\\\\rm }$\\n formation pathways\",\"authors\":\"Michael Stuhr, Sebastian Hesse, Nancy Faßheber, Marcel Wohler, Mithun Pal, Yasuyuki Sakai, Patrick Hemberger, Gernot Friedrichs\",\"doi\":\"10.1002/kin.21723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Oxalyl chloride, <span></span><math>\\n <semantics>\\n <msub>\\n <mtext>(ClCO)</mtext>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\text{(ClCO)}_2$</annotation>\\n </semantics></math>, is widely used as a photolytic source of Cl atoms in reaction kinetics studies. <span></span><math>\\n <semantics>\\n <msub>\\n <mtext>(ClCO)</mtext>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\text{(ClCO)}_2$</annotation>\\n </semantics></math> photolysis is typically assumed to produce Cl atoms with an overall yield of 2 via three-body dissociation, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>(ClCO)</mtext>\\n <mn>2</mn>\\n </msub>\\n <mo>+</mo>\\n <mi>h</mi>\\n <mi>ν</mi>\\n <mo>→</mo>\\n <mtext>Cl</mtext>\\n <mo>+</mo>\\n <mtext>CO</mtext>\\n <mo>+</mo>\\n <msup>\\n <mtext>ClCO</mtext>\\n <mo>∗</mo>\\n </msup>\\n </mrow>\\n <annotation>$\\\\text{(ClCO)}_2 + h\\\\nu \\\\rightarrow \\\\text{Cl} + \\\\text{CO} + \\\\text{ClCO}^*$</annotation>\\n </semantics></math>, followed by fast subsequent ClCO unimolecular decomposition of either the energetically excited <span></span><math>\\n <semantics>\\n <msup>\\n <mi>ClCO</mi>\\n <mo>∗</mo>\\n </msup>\\n <annotation>${\\\\rm ClCO}^*$</annotation>\\n </semantics></math> fragment, <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mtext>ClCO</mtext>\\n <mo>∗</mo>\\n </msup>\\n <mo>→</mo>\\n <mtext>Cl</mtext>\\n <mo>+</mo>\\n <mtext>CO</mtext>\\n </mrow>\\n <annotation>$\\\\text{ClCO}^* \\\\rightarrow \\\\text{Cl} + \\\\text{CO}$</annotation>\\n </semantics></math>, or the thermalized ClCO radical, <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>ClCO</mtext>\\n <mo>+</mo>\\n <mi>M</mi>\\n <mo>→</mo>\\n <mtext>Cl</mtext>\\n <mo>+</mo>\\n <mtext>CO</mtext>\\n <mo>+</mo>\\n <mi>M</mi>\\n </mrow>\\n <annotation>$\\\\text{ClCO} + \\\\text{M} \\\\rightarrow \\\\text{Cl} + \\\\text{CO} + \\\\text{M}$</annotation>\\n </semantics></math>. However, a study by Huang et al. (J. Phys. Chem. A 121 (2017) 2888–2895) found that UV photolysis of <span></span><math>\\n <semantics>\\n <msub>\\n <mtext>(ClCO)</mtext>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\text{(ClCO)}_2$</annotation>\\n </semantics></math> at <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>248</mn>\\n <mspace></mspace>\\n <mi>nm</mi>\\n </mrow>\\n <annotation>$248\\\\ {\\\\rm nm}$</annotation>\\n </semantics></math> directly yields <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Cl</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>${\\\\rm Cl}_2$</annotation>\\n </semantics></math> with a photolysis quantum yield of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ϕ</mi>\\n <mo>(</mo>\\n <msub>\\n <mtext>Cl</mtext>\\n <mn>2</mn>\\n </msub>\\n <mo>)</mo>\\n <mo>></mo>\\n <mn>14</mn>\\n <mo>%</mo>\\n </mrow>\\n <annotation>$\\\\phi (\\\\text{Cl}_2) &gt; 14\\\\%$</annotation>\\n </semantics></math>. This new product pathway may complicate the use of <span></span><math>\\n <semantics>\\n <msub>\\n <mtext>(ClCO)</mtext>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\text{(ClCO)}_2$</annotation>\\n </semantics></math> as a clean source of Cl atoms and challenges the previously accepted photodissociation scheme. The purpose of the present work was 2-fold. Firstly, the unimolecular decomposition of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>ClCO</mi>\\n <mo>∗</mo>\\n </msup>\\n <annotation>${\\\\rm ClCO}^*$</annotation>\\n </semantics></math> and ClCO radicals has been investigated in <span></span><math>\\n <semantics>\\n <msub>\\n <mtext>(ClCO)</mtext>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\text{(ClCO)}_2$</annotation>\\n </semantics></math>/<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n <mn>2</mn>\\n </msub>\\n <msub>\\n <mi>H</mi>\\n <mn>6</mn>\\n </msub>\\n <mrow>\\n <mo>/</mo>\\n <mi>Ar</mi>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\text{C}_{2}\\\\text{H}_6{\\\\rm {/Ar}}$</annotation>\\n </semantics></math> gas mixtures after UV photolysis at <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>266</mn>\\n <mspace></mspace>\\n <mrow></mrow>\\n </mrow>\\n <annotation>$266\\\\ {\\\\rm }$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>355</mn>\\n <mspace></mspace>\\n <mi>nm</mi>\\n </mrow>\\n <annotation>$355\\\\ {\\\\rm nm}$</annotation>\\n </semantics></math>. Cl atoms were captured by <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n <mn>2</mn>\\n </msub>\\n <msub>\\n <mi>H</mi>\\n <mn>6</mn>\\n </msub>\\n </mrow>\\n <annotation>$\\\\text{C}_{2}\\\\text{H}_6$</annotation>\\n </semantics></math> added in excess such that concentration-time profiles of HCl measured by means of mid-infrared frequency modulation spectroscopy reflect the temporally separated Cl formation pathways. The low-pressure thermal ClCO decomposition rate constant was determined to be <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mrow>\\n <mo>(</mo>\\n <mn>1.79</mn>\\n <mo>±</mo>\\n <mn>0.17</mn>\\n <mo>)</mo>\\n </mrow>\\n <mo>×</mo>\\n <msup>\\n <mn>10</mn>\\n <mrow>\\n <mo>−</mo>\\n <mn>14</mn>\\n </mrow>\\n </msup>\\n <mspace></mspace>\\n <msup>\\n <mtext>cm</mtext>\\n <mn>3</mn>\\n </msup>\\n <mspace></mspace>\\n <msup>\\n <mtext>molecule</mtext>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mspace></mspace>\\n <msup>\\n <mi>s</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$k = (1.79 \\\\pm 0.17)\\\\times 10^{-14}\\\\ \\\\text{cm}^{3}\\\\ \\\\text{molecule}^{-1}\\\\ \\\\text{s}^{-1}$</annotation>\\n </semantics></math> at <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>295</mn>\\n <mspace></mspace>\\n <mi>K</mi>\\n </mrow>\\n <annotation>$295\\\\ {\\\\rm K}$</annotation>\\n </semantics></math>, which is in very good agreement with previously reported literature values. Secondly, the photolysis quantum yield of direct <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Cl</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>${\\\\rm Cl}_2$</annotation>\\n </semantics></math> formation from <span></span><math>\\n <semantics>\\n <msub>\\n <mtext>(ClCO)</mtext>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\text{(ClCO)}_2$</annotation>\\n </semantics></math> photofragmentation was studied with time-of-flight mass spectrometry using a photoelectron photoion coincidence setup. Calibrated <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Cl</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>${\\\\rm Cl}_2$</annotation>\\n </semantics></math> concentration-time profiles were recorded and analyzed using kinetic simulations accounting for both direct and secondary formation of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Cl</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>${\\\\rm Cl}_2$</annotation>\\n </semantics></math> from photolysis and reactions involving Cl, ClCO, and <span></span><math>\\n <semantics>\\n <msub>\\n <mtext>(ClCO)</mtext>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\text{(ClCO)}_2$</annotation>\\n </semantics></math>, respectively. Direct <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Cl</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>${\\\\rm Cl}_2$</annotation>\\n </semantics></math> formation could be confirmed, where wavelength-dependent quantum yields of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ϕ</mi>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mtext>Cl</mtext>\\n <mn>2</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mrow>\\n <mo>(</mo>\\n <mn>5.0</mn>\\n <mo>±</mo>\\n <mn>1.6</mn>\\n <mo>)</mo>\\n </mrow>\\n <mo>%</mo>\\n </mrow>\\n <annotation>$\\\\phi (\\\\text{Cl}_2) = (5.0 \\\\pm 1.6)\\\\%$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mn>10.0</mn>\\n <mo>±</mo>\\n <mn>3.3</mn>\\n <mo>)</mo>\\n <mo>%</mo>\\n </mrow>\\n <annotation>$(10.0 \\\\pm 3.3)\\\\%$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mn>5.6</mn>\\n <mo>±</mo>\\n <mn>2.0</mn>\\n <mo>)</mo>\\n <mo>%</mo>\\n </mrow>\\n <annotation>$(5.6 \\\\pm 2.0)\\\\%$</annotation>\\n </semantics></math> at <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>213</mn>\\n <mspace></mspace>\\n <mi>nm</mi>\\n </mrow>\\n <annotation>$213\\\\ {\\\\rm nm}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>266</mn>\\n <mspace></mspace>\\n <mi>nm</mi>\\n </mrow>\\n <annotation>$266\\\\ {\\\\rm nm}$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>355</mn>\\n <mspace></mspace>\\n <mi>nm</mi>\\n </mrow>\\n <annotation>$355\\\\ {\\\\rm nm}$</annotation>\\n </semantics></math> were determined. Complementary quantum-chemical calculations of the potential energy diagram for ground-state photodissociation reveal a low-lying energy barrier for the formation of phosgene, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Cl</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>CO</mi>\\n </mrow>\\n <annotation>${\\\\rm Cl}_2{\\\\rm CO}$</annotation>\\n </semantics></math>. We suggest that subsequent <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Cl</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>${\\\\rm Cl}_2$</annotation>\\n </semantics></math> and Cl formation from energetically excited <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Cl</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>CO</mi>\\n </mrow>\\n <annotation>${\\\\rm Cl}_2{\\\\rm CO}$</annotation>\\n </semantics></math> may actually play a role for the overall photodissociation of <span></span><math>\\n <semantics>\\n <msub>\\n <mtext>(ClCO)</mtext>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\text{(ClCO)}_2$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":13894,\"journal\":{\"name\":\"International Journal of Chemical Kinetics\",\"volume\":\"56 8\",\"pages\":\"482-498\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/kin.21723\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Kinetics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/kin.21723\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21723","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
引用
批量引用