Xinru Liu, Yongjing Hao, Lei Zhao, Guanfeng Liu, Victor S. Sheng, Pengpeng Zhao
{"title":"LMACL:利用可学习模型增强对比学习改进图协同过滤技术","authors":"Xinru Liu, Yongjing Hao, Lei Zhao, Guanfeng Liu, Victor S. Sheng, Pengpeng Zhao","doi":"10.1145/3657302","DOIUrl":null,"url":null,"abstract":"<p>Graph collaborative filtering (GCF) has achieved exciting recommendation performance with its ability to aggregate high-order graph structure information. Recently, contrastive learning (CL) has been incorporated into GCF to alleviate data sparsity and noise issues. However, most of the existing methods employ random or manual augmentation to produce contrastive views that may destroy the original topology and amplify the noisy effects. We argue that such augmentation is insufficient to produce the optimal contrastive view, leading to suboptimal recommendation results. In this paper, we proposed a <b>L</b>earnable <b>M</b>odel <b>A</b>ugmentation <b>C</b>ontrastive <b>L</b>earning (LMACL) framework for recommendation, which effectively combines graph-level and node-level collaborative relations to enhance the expressiveness of collaborative filtering (CF) paradigm. Specifically, we first use the graph convolution network (GCN) as a backbone encoder to incorporate multi-hop neighbors into graph-level original node representations by leveraging the high-order connectivity in user-item interaction graphs. At the same time, we treat the multi-head graph attention network (GAT) as an augmentation view generator to adaptively generate high-quality node-level augmented views. Finally, joint learning endows the end-to-end training fashion. In this case, the mutual supervision and collaborative cooperation of GCN and GAT achieves learnable model augmentation. Extensive experiments on several benchmark datasets demonstrate that LMACL provides a significant improvement over the strongest baseline in terms of <i>Recall</i> and <i>NDCG</i> by 2.5-3.8% and 1.6-4.0%, respectively. Our model implementation code is available at https://github.com/LiuHsinx/LMACL.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"81 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LMACL: Improving Graph Collaborative Filtering with Learnable Model Augmentation Contrastive Learning\",\"authors\":\"Xinru Liu, Yongjing Hao, Lei Zhao, Guanfeng Liu, Victor S. Sheng, Pengpeng Zhao\",\"doi\":\"10.1145/3657302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Graph collaborative filtering (GCF) has achieved exciting recommendation performance with its ability to aggregate high-order graph structure information. Recently, contrastive learning (CL) has been incorporated into GCF to alleviate data sparsity and noise issues. However, most of the existing methods employ random or manual augmentation to produce contrastive views that may destroy the original topology and amplify the noisy effects. We argue that such augmentation is insufficient to produce the optimal contrastive view, leading to suboptimal recommendation results. In this paper, we proposed a <b>L</b>earnable <b>M</b>odel <b>A</b>ugmentation <b>C</b>ontrastive <b>L</b>earning (LMACL) framework for recommendation, which effectively combines graph-level and node-level collaborative relations to enhance the expressiveness of collaborative filtering (CF) paradigm. Specifically, we first use the graph convolution network (GCN) as a backbone encoder to incorporate multi-hop neighbors into graph-level original node representations by leveraging the high-order connectivity in user-item interaction graphs. At the same time, we treat the multi-head graph attention network (GAT) as an augmentation view generator to adaptively generate high-quality node-level augmented views. Finally, joint learning endows the end-to-end training fashion. In this case, the mutual supervision and collaborative cooperation of GCN and GAT achieves learnable model augmentation. Extensive experiments on several benchmark datasets demonstrate that LMACL provides a significant improvement over the strongest baseline in terms of <i>Recall</i> and <i>NDCG</i> by 2.5-3.8% and 1.6-4.0%, respectively. Our model implementation code is available at https://github.com/LiuHsinx/LMACL.</p>\",\"PeriodicalId\":49249,\"journal\":{\"name\":\"ACM Transactions on Knowledge Discovery from Data\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Knowledge Discovery from Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3657302\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3657302","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
LMACL: Improving Graph Collaborative Filtering with Learnable Model Augmentation Contrastive Learning
Graph collaborative filtering (GCF) has achieved exciting recommendation performance with its ability to aggregate high-order graph structure information. Recently, contrastive learning (CL) has been incorporated into GCF to alleviate data sparsity and noise issues. However, most of the existing methods employ random or manual augmentation to produce contrastive views that may destroy the original topology and amplify the noisy effects. We argue that such augmentation is insufficient to produce the optimal contrastive view, leading to suboptimal recommendation results. In this paper, we proposed a Learnable Model Augmentation Contrastive Learning (LMACL) framework for recommendation, which effectively combines graph-level and node-level collaborative relations to enhance the expressiveness of collaborative filtering (CF) paradigm. Specifically, we first use the graph convolution network (GCN) as a backbone encoder to incorporate multi-hop neighbors into graph-level original node representations by leveraging the high-order connectivity in user-item interaction graphs. At the same time, we treat the multi-head graph attention network (GAT) as an augmentation view generator to adaptively generate high-quality node-level augmented views. Finally, joint learning endows the end-to-end training fashion. In this case, the mutual supervision and collaborative cooperation of GCN and GAT achieves learnable model augmentation. Extensive experiments on several benchmark datasets demonstrate that LMACL provides a significant improvement over the strongest baseline in terms of Recall and NDCG by 2.5-3.8% and 1.6-4.0%, respectively. Our model implementation code is available at https://github.com/LiuHsinx/LMACL.
期刊介绍:
TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.