FETILDA:长篇财务文件有效表述的评估框架

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Bolun (Namir) Xia, Vipula Rawte, Aparna Gupta, Mohammed Zaki
{"title":"FETILDA:长篇财务文件有效表述的评估框架","authors":"Bolun (Namir) Xia, Vipula Rawte, Aparna Gupta, Mohammed Zaki","doi":"10.1145/3657299","DOIUrl":null,"url":null,"abstract":"<p>In the financial sphere, there is a wealth of accumulated unstructured financial data, such as the textual disclosure documents that companies submit on a regular basis to regulatory agencies, such as the Securities and Exchange Commission (SEC). These documents are typically very long and tend to contain valuable soft information about a company’s performance that is not present in quantitative predictors. It is therefore of great interest to learn predictive models from these long textual documents, especially for forecasting numerical key performance indicators (KPIs). In recent years, there has been a great progress in natural language processing via pre-trained language models (LMs) learned from large corpora of textual data. This prompts the important question of whether they can be used effectively to produce representations for long documents, as well as how we can evaluate the effectiveness of representations produced by various LMs. Our work focuses on answering this critical question, namely the evaluation of the efficacy of various LMs in extracting useful soft information from long textual documents for prediction tasks. In this paper, we propose and implement a deep learning evaluation framework that utilizes a sequential chunking approach combined with an attention mechanism. We perform an extensive set of experiments on a collection of 10-K reports submitted annually by US banks, and another dataset of reports submitted by US companies, in order to investigate thoroughly the performance of different types of language models. Overall, our framework using LMs outperforms strong baseline methods for textual modeling as well as for numerical regression. Our work provides better insights into how utilizing pre-trained domain-specific and fine-tuned long-input LMs for representing long documents can improve the quality of representation of textual data, and therefore, help in improving predictive analyses.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"106 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FETILDA: An Evaluation Framework for Effective Representations of Long Financial Documents\",\"authors\":\"Bolun (Namir) Xia, Vipula Rawte, Aparna Gupta, Mohammed Zaki\",\"doi\":\"10.1145/3657299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the financial sphere, there is a wealth of accumulated unstructured financial data, such as the textual disclosure documents that companies submit on a regular basis to regulatory agencies, such as the Securities and Exchange Commission (SEC). These documents are typically very long and tend to contain valuable soft information about a company’s performance that is not present in quantitative predictors. It is therefore of great interest to learn predictive models from these long textual documents, especially for forecasting numerical key performance indicators (KPIs). In recent years, there has been a great progress in natural language processing via pre-trained language models (LMs) learned from large corpora of textual data. This prompts the important question of whether they can be used effectively to produce representations for long documents, as well as how we can evaluate the effectiveness of representations produced by various LMs. Our work focuses on answering this critical question, namely the evaluation of the efficacy of various LMs in extracting useful soft information from long textual documents for prediction tasks. In this paper, we propose and implement a deep learning evaluation framework that utilizes a sequential chunking approach combined with an attention mechanism. We perform an extensive set of experiments on a collection of 10-K reports submitted annually by US banks, and another dataset of reports submitted by US companies, in order to investigate thoroughly the performance of different types of language models. Overall, our framework using LMs outperforms strong baseline methods for textual modeling as well as for numerical regression. Our work provides better insights into how utilizing pre-trained domain-specific and fine-tuned long-input LMs for representing long documents can improve the quality of representation of textual data, and therefore, help in improving predictive analyses.</p>\",\"PeriodicalId\":49249,\"journal\":{\"name\":\"ACM Transactions on Knowledge Discovery from Data\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Knowledge Discovery from Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3657299\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3657299","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在金融领域,积累了大量的非结构化金融数据,例如公司定期向证券交易委员会(SEC)等监管机构提交的文本披露文件。这些文件通常篇幅很长,往往包含定量预测指标中没有的有关公司业绩的宝贵软信息。因此,从这些长文本文件中学习预测模型,尤其是预测关键绩效指标(KPI)的数值,是非常有意义的。近年来,通过从大量文本数据中学习预训练语言模型(LMs)的自然语言处理技术取得了巨大进步。这就提出了一个重要问题:这些模型能否有效地用于生成长文档的表征,以及我们如何评估各种 LM 生成的表征的有效性。我们的工作重点就是回答这个关键问题,即评估各种 LM 在为预测任务从长文本文档中提取有用软信息方面的功效。在本文中,我们提出并实施了一个深度学习评估框架,该框架利用了一种与注意力机制相结合的顺序分块方法。我们在美国银行每年提交的 10-K 报告集和美国公司提交的另一个报告数据集上进行了大量实验,以深入研究不同类型语言模型的性能。总体而言,在文本建模和数值回归方面,我们使用语言模型的框架优于强大的基准方法。我们的工作提供了更好的见解,让人们了解利用预先训练的特定领域和微调的长输入 LM 来表示长文档如何能提高文本数据的表示质量,从而有助于改进预测分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FETILDA: An Evaluation Framework for Effective Representations of Long Financial Documents

In the financial sphere, there is a wealth of accumulated unstructured financial data, such as the textual disclosure documents that companies submit on a regular basis to regulatory agencies, such as the Securities and Exchange Commission (SEC). These documents are typically very long and tend to contain valuable soft information about a company’s performance that is not present in quantitative predictors. It is therefore of great interest to learn predictive models from these long textual documents, especially for forecasting numerical key performance indicators (KPIs). In recent years, there has been a great progress in natural language processing via pre-trained language models (LMs) learned from large corpora of textual data. This prompts the important question of whether they can be used effectively to produce representations for long documents, as well as how we can evaluate the effectiveness of representations produced by various LMs. Our work focuses on answering this critical question, namely the evaluation of the efficacy of various LMs in extracting useful soft information from long textual documents for prediction tasks. In this paper, we propose and implement a deep learning evaluation framework that utilizes a sequential chunking approach combined with an attention mechanism. We perform an extensive set of experiments on a collection of 10-K reports submitted annually by US banks, and another dataset of reports submitted by US companies, in order to investigate thoroughly the performance of different types of language models. Overall, our framework using LMs outperforms strong baseline methods for textual modeling as well as for numerical regression. Our work provides better insights into how utilizing pre-trained domain-specific and fine-tuned long-input LMs for representing long documents can improve the quality of representation of textual data, and therefore, help in improving predictive analyses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Knowledge Discovery from Data
ACM Transactions on Knowledge Discovery from Data COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
6.70
自引率
5.60%
发文量
172
审稿时长
3 months
期刊介绍: TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信