C. Devanathan, D. Elil Raja, Tushar Sonar, Mikhail Ivanov
{"title":"B4C 增强 AA5083 金属基复合材料摩擦搅拌焊中摩擦系数的影响及使用模糊聚类技术预测焊接强度","authors":"C. Devanathan, D. Elil Raja, Tushar Sonar, Mikhail Ivanov","doi":"10.1155/2024/9880686","DOIUrl":null,"url":null,"abstract":"The friction stir welding (FSW) method was used to weld B4C reinforced AA 5083 metal matrix composites in this study. By coating titanium nitride (TiN), aluminium chromium nitride (AlCrN), and diamond-like carbon (DLC) to a thickness of 4 microns, three FSW tools with square pin profiles were developed and the friction coefficients of 0.69, 0.32, and 0.2 were maintained. At three levels, the process factors such as tool rotating speed, transverse feed, and axial force were examined. For each tool, 15 samples were made using the central composite design. The influence of the friction coefficient on ultimate tensile strength, microstructural features, and tool condition was studied, and the flower pollination algorithm (FPA) technique was used to find the best process parameters for obtaining maximum ultimate tensile strength of FSW joints. The improved tensile strength of FSW joints was verified using a validation test. The coating has a considerable influence on the ultimate tensile strength, microstructure, and tool condition, according to the results of the tool’s friction coefficient. The results on the prediction of strength using the fuzzy clustering technique showed that the technique is effective in predicting the tensile strength values, with the root mean square error (RSME) of TiN, AlCrN, and DLC being 0.0027, 0.0016, and 0.0015, respectively, and the low RSME indicating that the prediction based on the fuzzy subtractive clustering technique is perfect and effective.","PeriodicalId":7345,"journal":{"name":"Advances in Materials Science and Engineering","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Friction Coefficient in Friction Stir Welding of B4C Reinforced AA5083 Metal Matrix Composites and Use of Fuzzy Clustering Technique for Weld Strength Prediction\",\"authors\":\"C. Devanathan, D. Elil Raja, Tushar Sonar, Mikhail Ivanov\",\"doi\":\"10.1155/2024/9880686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The friction stir welding (FSW) method was used to weld B4C reinforced AA 5083 metal matrix composites in this study. By coating titanium nitride (TiN), aluminium chromium nitride (AlCrN), and diamond-like carbon (DLC) to a thickness of 4 microns, three FSW tools with square pin profiles were developed and the friction coefficients of 0.69, 0.32, and 0.2 were maintained. At three levels, the process factors such as tool rotating speed, transverse feed, and axial force were examined. For each tool, 15 samples were made using the central composite design. The influence of the friction coefficient on ultimate tensile strength, microstructural features, and tool condition was studied, and the flower pollination algorithm (FPA) technique was used to find the best process parameters for obtaining maximum ultimate tensile strength of FSW joints. The improved tensile strength of FSW joints was verified using a validation test. The coating has a considerable influence on the ultimate tensile strength, microstructure, and tool condition, according to the results of the tool’s friction coefficient. The results on the prediction of strength using the fuzzy clustering technique showed that the technique is effective in predicting the tensile strength values, with the root mean square error (RSME) of TiN, AlCrN, and DLC being 0.0027, 0.0016, and 0.0015, respectively, and the low RSME indicating that the prediction based on the fuzzy subtractive clustering technique is perfect and effective.\",\"PeriodicalId\":7345,\"journal\":{\"name\":\"Advances in Materials Science and Engineering\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Materials Science and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/9880686\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2024/9880686","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Effect of Friction Coefficient in Friction Stir Welding of B4C Reinforced AA5083 Metal Matrix Composites and Use of Fuzzy Clustering Technique for Weld Strength Prediction
The friction stir welding (FSW) method was used to weld B4C reinforced AA 5083 metal matrix composites in this study. By coating titanium nitride (TiN), aluminium chromium nitride (AlCrN), and diamond-like carbon (DLC) to a thickness of 4 microns, three FSW tools with square pin profiles were developed and the friction coefficients of 0.69, 0.32, and 0.2 were maintained. At three levels, the process factors such as tool rotating speed, transverse feed, and axial force were examined. For each tool, 15 samples were made using the central composite design. The influence of the friction coefficient on ultimate tensile strength, microstructural features, and tool condition was studied, and the flower pollination algorithm (FPA) technique was used to find the best process parameters for obtaining maximum ultimate tensile strength of FSW joints. The improved tensile strength of FSW joints was verified using a validation test. The coating has a considerable influence on the ultimate tensile strength, microstructure, and tool condition, according to the results of the tool’s friction coefficient. The results on the prediction of strength using the fuzzy clustering technique showed that the technique is effective in predicting the tensile strength values, with the root mean square error (RSME) of TiN, AlCrN, and DLC being 0.0027, 0.0016, and 0.0015, respectively, and the low RSME indicating that the prediction based on the fuzzy subtractive clustering technique is perfect and effective.
期刊介绍:
Advances in Materials Science and Engineering is a broad scope journal that publishes articles in all areas of materials science and engineering including, but not limited to:
-Chemistry and fundamental properties of matter
-Material synthesis, fabrication, manufacture, and processing
-Magnetic, electrical, thermal, and optical properties of materials
-Strength, durability, and mechanical behaviour of materials
-Consideration of materials in structural design, modelling, and engineering
-Green and renewable materials, and consideration of materials’ life cycles
-Materials in specialist applications (such as medicine, energy, aerospace, and nanotechnology)