{"title":"利用重组策略制备用于高效净化复杂废水的木基水凝胶膜","authors":"Qian He, Junkai Gao, Zhongzhi Chen, Yuanjing Ding, Mengsheng Xia, Pengtao Xu, Yan Chen","doi":"10.1007/s11783-024-1844-z","DOIUrl":null,"url":null,"abstract":"<p>To avoid resource wastage and secondary environmental pollution, recycling and reusing waste wood powder is still a great challenge. Moreover, the poor viscosity and irregular pore size of wood powder limit its practical application. This study employed a green and convenient wood powder reconstitution strategy to achieve highly adhesive bonding and pore size control between wood powder particles, thus preparing a high-strength and super hydrophilic wood powder membrane. The wood powder fibers were partially dissolved and regenerated to create a reconstituted wood powder hydrogel membrane, using waste wood powder as the raw material. The wood powder reconstitution strategy offers advantages such as environmental friendliness, simplicity, cost-effectiveness, and strong universality. Furthermore, the materials exhibit excellent self-cleaning properties and superhydrophilicity. Driven by gravity, the membrane can purify oily wastewater and dyes. Additionally, the reconstitution strategy offers a new pathway for recycling wood powder.\n</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of wood-based hydrogel membranes for efficient purification of complex wastewater using a reconstitution strategy\",\"authors\":\"Qian He, Junkai Gao, Zhongzhi Chen, Yuanjing Ding, Mengsheng Xia, Pengtao Xu, Yan Chen\",\"doi\":\"10.1007/s11783-024-1844-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To avoid resource wastage and secondary environmental pollution, recycling and reusing waste wood powder is still a great challenge. Moreover, the poor viscosity and irregular pore size of wood powder limit its practical application. This study employed a green and convenient wood powder reconstitution strategy to achieve highly adhesive bonding and pore size control between wood powder particles, thus preparing a high-strength and super hydrophilic wood powder membrane. The wood powder fibers were partially dissolved and regenerated to create a reconstituted wood powder hydrogel membrane, using waste wood powder as the raw material. The wood powder reconstitution strategy offers advantages such as environmental friendliness, simplicity, cost-effectiveness, and strong universality. Furthermore, the materials exhibit excellent self-cleaning properties and superhydrophilicity. Driven by gravity, the membrane can purify oily wastewater and dyes. Additionally, the reconstitution strategy offers a new pathway for recycling wood powder.\\n</p>\",\"PeriodicalId\":12720,\"journal\":{\"name\":\"Frontiers of Environmental Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Environmental Science & Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11783-024-1844-z\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Environmental Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11783-024-1844-z","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Preparation of wood-based hydrogel membranes for efficient purification of complex wastewater using a reconstitution strategy
To avoid resource wastage and secondary environmental pollution, recycling and reusing waste wood powder is still a great challenge. Moreover, the poor viscosity and irregular pore size of wood powder limit its practical application. This study employed a green and convenient wood powder reconstitution strategy to achieve highly adhesive bonding and pore size control between wood powder particles, thus preparing a high-strength and super hydrophilic wood powder membrane. The wood powder fibers were partially dissolved and regenerated to create a reconstituted wood powder hydrogel membrane, using waste wood powder as the raw material. The wood powder reconstitution strategy offers advantages such as environmental friendliness, simplicity, cost-effectiveness, and strong universality. Furthermore, the materials exhibit excellent self-cleaning properties and superhydrophilicity. Driven by gravity, the membrane can purify oily wastewater and dyes. Additionally, the reconstitution strategy offers a new pathway for recycling wood powder.
期刊介绍:
Frontiers of Environmental Science & Engineering (FESE) is an international journal for researchers interested in a wide range of environmental disciplines. The journal''s aim is to advance and disseminate knowledge in all main branches of environmental science & engineering. The journal emphasizes papers in developing fields, as well as papers showing the interaction between environmental disciplines and other disciplines.
FESE is a bi-monthly journal. Its peer-reviewed contents consist of a broad blend of reviews, research papers, policy analyses, short communications, and opinions. Nonscheduled “special issue” and "hot topic", including a review article followed by a couple of related research articles, are organized to publish novel contributions and breaking results on all aspects of environmental field.