{"title":"通过帕斯卡型三角形论莱昂纳多序列","authors":"Serpil Halıcı, Sule Curuk","doi":"10.1155/2024/9352986","DOIUrl":null,"url":null,"abstract":"In this study, we discussed the Leonardo number sequence, which has been studied recently and caught more attention. We used Pascal and Hosoya-like triangles to make it easier to examine the basic properties of these numbers. With the help of the properties obtained in this study, we defined a number sequence containing the new type of Leonardo numbers created by choosing the coefficients from the bicomplex numbers. Furthermore, we gave the relationship of this newly defined sequence with the Fibonacci sequence. We also provided some important identities in the literature provided by the elements of this sequence described in this paper.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"63 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Leonardo Sequence via Pascal-Type Triangles\",\"authors\":\"Serpil Halıcı, Sule Curuk\",\"doi\":\"10.1155/2024/9352986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we discussed the Leonardo number sequence, which has been studied recently and caught more attention. We used Pascal and Hosoya-like triangles to make it easier to examine the basic properties of these numbers. With the help of the properties obtained in this study, we defined a number sequence containing the new type of Leonardo numbers created by choosing the coefficients from the bicomplex numbers. Furthermore, we gave the relationship of this newly defined sequence with the Fibonacci sequence. We also provided some important identities in the literature provided by the elements of this sequence described in this paper.\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/9352986\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/9352986","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the Leonardo Sequence via Pascal-Type Triangles
In this study, we discussed the Leonardo number sequence, which has been studied recently and caught more attention. We used Pascal and Hosoya-like triangles to make it easier to examine the basic properties of these numbers. With the help of the properties obtained in this study, we defined a number sequence containing the new type of Leonardo numbers created by choosing the coefficients from the bicomplex numbers. Furthermore, we gave the relationship of this newly defined sequence with the Fibonacci sequence. We also provided some important identities in the literature provided by the elements of this sequence described in this paper.
期刊介绍:
Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.