Ewelina Sobolewska, Sebastian Borowski, Paulina Nowicka-Krawczyk
{"title":"在液态消化液中培养微藻以去除营养物质和有机污染物","authors":"Ewelina Sobolewska, Sebastian Borowski, Paulina Nowicka-Krawczyk","doi":"10.1007/s12155-024-10753-4","DOIUrl":null,"url":null,"abstract":"<div><p>The goal of this research was to assess the efficiency of the liquid digestate treatment conducted with algal, environmental isolates illuminated entirely with sunlight. The photobioreactor was exposed to natural conditions and evaluated based on the reduction of chemical oxygen demand (COD), nitrogen compounds, and soluble phosphates. Microalgal and bacterial communities growing during the treatment process were studied. A high removal rate of soluble COD (= 91%) and nutrients (= 86%) was achieved. The average concentrations of nitrogen, phosphates, and COD in the reactor effluent were 95 mgN/L, 49 mg/L, and 735 mg O<sub>2</sub>/L, respectively. The overall algae-bacteria biomass productivity of 22 mg/L/d, calculated on the total suspended solids (TSS) basis, was recorded. The microbial analysis revealed the dominance of <i>Tetradesmus obliquus</i> followed by <i>Microglena</i> sp. in the first 14 weeks of the experiment. At the end of the experimental run, <i>Chlorella sorokiniana</i> cells appeared as a result of illumination intensity changes. The dominating bacteria belonged to Firmicutes (26.31%), Patescibacteria (17.38%), and Actinobacteriota (14.86%) and could have been responsible for the transformation of nitrogen and oxidation of organic contaminants. The research demonstrated that natural sunlight can successfully be used for efficient liquid digestate treatment with the algae-bacterial community.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1843 - 1855"},"PeriodicalIF":3.1000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12155-024-10753-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Cultivation of Microalgae in Liquid Digestate to Remove Nutrients and Organic Contaminants\",\"authors\":\"Ewelina Sobolewska, Sebastian Borowski, Paulina Nowicka-Krawczyk\",\"doi\":\"10.1007/s12155-024-10753-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The goal of this research was to assess the efficiency of the liquid digestate treatment conducted with algal, environmental isolates illuminated entirely with sunlight. The photobioreactor was exposed to natural conditions and evaluated based on the reduction of chemical oxygen demand (COD), nitrogen compounds, and soluble phosphates. Microalgal and bacterial communities growing during the treatment process were studied. A high removal rate of soluble COD (= 91%) and nutrients (= 86%) was achieved. The average concentrations of nitrogen, phosphates, and COD in the reactor effluent were 95 mgN/L, 49 mg/L, and 735 mg O<sub>2</sub>/L, respectively. The overall algae-bacteria biomass productivity of 22 mg/L/d, calculated on the total suspended solids (TSS) basis, was recorded. The microbial analysis revealed the dominance of <i>Tetradesmus obliquus</i> followed by <i>Microglena</i> sp. in the first 14 weeks of the experiment. At the end of the experimental run, <i>Chlorella sorokiniana</i> cells appeared as a result of illumination intensity changes. The dominating bacteria belonged to Firmicutes (26.31%), Patescibacteria (17.38%), and Actinobacteriota (14.86%) and could have been responsible for the transformation of nitrogen and oxidation of organic contaminants. The research demonstrated that natural sunlight can successfully be used for efficient liquid digestate treatment with the algae-bacterial community.</p></div>\",\"PeriodicalId\":487,\"journal\":{\"name\":\"BioEnergy Research\",\"volume\":\"17 3\",\"pages\":\"1843 - 1855\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12155-024-10753-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioEnergy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12155-024-10753-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEnergy Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12155-024-10753-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Cultivation of Microalgae in Liquid Digestate to Remove Nutrients and Organic Contaminants
The goal of this research was to assess the efficiency of the liquid digestate treatment conducted with algal, environmental isolates illuminated entirely with sunlight. The photobioreactor was exposed to natural conditions and evaluated based on the reduction of chemical oxygen demand (COD), nitrogen compounds, and soluble phosphates. Microalgal and bacterial communities growing during the treatment process were studied. A high removal rate of soluble COD (= 91%) and nutrients (= 86%) was achieved. The average concentrations of nitrogen, phosphates, and COD in the reactor effluent were 95 mgN/L, 49 mg/L, and 735 mg O2/L, respectively. The overall algae-bacteria biomass productivity of 22 mg/L/d, calculated on the total suspended solids (TSS) basis, was recorded. The microbial analysis revealed the dominance of Tetradesmus obliquus followed by Microglena sp. in the first 14 weeks of the experiment. At the end of the experimental run, Chlorella sorokiniana cells appeared as a result of illumination intensity changes. The dominating bacteria belonged to Firmicutes (26.31%), Patescibacteria (17.38%), and Actinobacteriota (14.86%) and could have been responsible for the transformation of nitrogen and oxidation of organic contaminants. The research demonstrated that natural sunlight can successfully be used for efficient liquid digestate treatment with the algae-bacterial community.
期刊介绍:
BioEnergy Research fills a void in the rapidly growing area of feedstock biology research related to biomass, biofuels, and bioenergy. The journal publishes a wide range of articles, including peer-reviewed scientific research, reviews, perspectives and commentary, industry news, and government policy updates. Its coverage brings together a uniquely broad combination of disciplines with a common focus on feedstock biology and science, related to biomass, biofeedstock, and bioenergy production.