{"title":"铁热改性活性炭在顶空气相色谱法支持的静态批处理系统中用于沼气脱硫的性能评估","authors":"Mayerlin Edith Acuña Montaño, Luciane Effting, Carmen Luisa Barbosa Guedes, Gregorio Guadalupe Carbajal Arizaga, Renata Mello Giona, Patricia Hissae Yassue Cordeiro, César Ricardo Teixeira Tarley, Alesandro Bail","doi":"10.1186/s40543-024-00432-6","DOIUrl":null,"url":null,"abstract":"A static batch arrangement composed of anti-leak vials coupled to gas chromatography is proposed as a complementary system for performance assessment of biogas desulfurization by adsorption. For testing, a modified commercial activated carbon produced by controlled thermal treatment in the presence of iron(III) species improved biogas desulfurization. The adsorbents showed a superior hydrogen sulfide removal compared to ordinary one. Pseudo-first-order, pseudo-second-order, and Bangham’s kinetic models were used to fit experimental data. All studied samples followed pseudo-first-order model, indicating the predominance of physisorption, and Bangham’s model, confirming that the micropores structure played an important role for gases diffusion and adsorbent capacity. Additionally, the materials were characterized by N2 adsorption–desorption, X-ray diffraction, infrared spectroscopy, scanning electron microscopy and energy-dispersive spectroscopy. The thermal treatment associated with iron impregnation caused significant modifications in the surface of the materials, and the iron species showed two main benefits: an expressive increase in the specific area and the formation of specific adsorption sites for hydrogen sulfide removal. The results reinforce the advantages of iron-modified adsorbents in relation to their non-modified counterparts. The analytical methodology based on the confinement of multiple gases contributes to improving the understanding of the hydrogen sulfide adsorption process using pressure swing adsorption technology. ","PeriodicalId":14967,"journal":{"name":"Journal of Analytical Science and Technology","volume":"52 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance assessment of activated carbon thermally modified with iron in the desulfurization of biogas in a static batch system supported by headspace gas chromatography\",\"authors\":\"Mayerlin Edith Acuña Montaño, Luciane Effting, Carmen Luisa Barbosa Guedes, Gregorio Guadalupe Carbajal Arizaga, Renata Mello Giona, Patricia Hissae Yassue Cordeiro, César Ricardo Teixeira Tarley, Alesandro Bail\",\"doi\":\"10.1186/s40543-024-00432-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A static batch arrangement composed of anti-leak vials coupled to gas chromatography is proposed as a complementary system for performance assessment of biogas desulfurization by adsorption. For testing, a modified commercial activated carbon produced by controlled thermal treatment in the presence of iron(III) species improved biogas desulfurization. The adsorbents showed a superior hydrogen sulfide removal compared to ordinary one. Pseudo-first-order, pseudo-second-order, and Bangham’s kinetic models were used to fit experimental data. All studied samples followed pseudo-first-order model, indicating the predominance of physisorption, and Bangham’s model, confirming that the micropores structure played an important role for gases diffusion and adsorbent capacity. Additionally, the materials were characterized by N2 adsorption–desorption, X-ray diffraction, infrared spectroscopy, scanning electron microscopy and energy-dispersive spectroscopy. The thermal treatment associated with iron impregnation caused significant modifications in the surface of the materials, and the iron species showed two main benefits: an expressive increase in the specific area and the formation of specific adsorption sites for hydrogen sulfide removal. The results reinforce the advantages of iron-modified adsorbents in relation to their non-modified counterparts. The analytical methodology based on the confinement of multiple gases contributes to improving the understanding of the hydrogen sulfide adsorption process using pressure swing adsorption technology. \",\"PeriodicalId\":14967,\"journal\":{\"name\":\"Journal of Analytical Science and Technology\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Science and Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1186/s40543-024-00432-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Science and Technology","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1186/s40543-024-00432-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Performance assessment of activated carbon thermally modified with iron in the desulfurization of biogas in a static batch system supported by headspace gas chromatography
A static batch arrangement composed of anti-leak vials coupled to gas chromatography is proposed as a complementary system for performance assessment of biogas desulfurization by adsorption. For testing, a modified commercial activated carbon produced by controlled thermal treatment in the presence of iron(III) species improved biogas desulfurization. The adsorbents showed a superior hydrogen sulfide removal compared to ordinary one. Pseudo-first-order, pseudo-second-order, and Bangham’s kinetic models were used to fit experimental data. All studied samples followed pseudo-first-order model, indicating the predominance of physisorption, and Bangham’s model, confirming that the micropores structure played an important role for gases diffusion and adsorbent capacity. Additionally, the materials were characterized by N2 adsorption–desorption, X-ray diffraction, infrared spectroscopy, scanning electron microscopy and energy-dispersive spectroscopy. The thermal treatment associated with iron impregnation caused significant modifications in the surface of the materials, and the iron species showed two main benefits: an expressive increase in the specific area and the formation of specific adsorption sites for hydrogen sulfide removal. The results reinforce the advantages of iron-modified adsorbents in relation to their non-modified counterparts. The analytical methodology based on the confinement of multiple gases contributes to improving the understanding of the hydrogen sulfide adsorption process using pressure swing adsorption technology.
期刊介绍:
The Journal of Analytical Science and Technology (JAST) is a fully open access peer-reviewed scientific journal published under the brand SpringerOpen. JAST was launched by Korea Basic Science Institute in 2010. JAST publishes original research and review articles on all aspects of analytical principles, techniques, methods, procedures, and equipment. JAST’s vision is to be an internationally influential and widely read analytical science journal. Our mission is to inform and stimulate researchers to make significant professional achievements in science. We aim to provide scientists, researchers, and students worldwide with unlimited access to the latest advances of the analytical sciences.